ARM匯編語言(Assembly Language)是ARM CPU所能接受的最底層唯一語言(所有的高級語言最終都要轉換成匯編語言然後匯編成processor instruction codes)。ARM匯編的核心是ARM指令集。理解ARM匯編有助於理解底層processor內部的工作原理,有助於對高級語言的優化。由於ARM匯編小、快的特點,經常被用在processor的初始化配置中(常見於bootloader、kernel的初始化代碼)。
ARM Assembly Language(語法)
不同於其他高級語言,匯編語言沒有一個標准的語法格式,不同的assembler有著不同的語法,不同的processor有著不同的指令(instruction code)格式。機器所能執行的是raw instruction code,匯編語言使用人類易懂的mnemonics來代替instruction code,然後通過assembler匯編成二進制的raw instruction code。以下主要針對ARM處理器指令格式及GNU Assembler進行講解。
語句格式(Layout)
ARM匯編源文件是由每行一條語句順序組成的文本文件。語句格式如下:
label: instruction @comment
每條語句由標簽(label)、指令(instruction)、注釋(comment)三項組成且每一項都是可選的:
-
Label
內存地址的標記,指向一個特定地址,常被跳轉指令(branch instructions)用來跳轉。
-
Instruction
ARM匯編指令(ARM assembly instruction)、所使用的匯編器指令(assembler directive)。
-
Comment
注釋以@符號開始,但在有些現代匯編器如GAS(GNU Assember)中,也可以使用C語言風格 /**/。
<op>{cond}{flags} Rd, Rn, Operand2
CODE | MEANING | FLAGS |
EQ
EQual equals zero
Z
NE
Not Equal
!Z
VS
Overflow Set
V
VC
No overflow (oVerflow Clear)
!V
MI
MInus/negative
N
PL
PLus/positive or zero
!N
CS
Carry set/unsigned higher or same
C
CC
Carry clear/unsigned lower
!C
HI
Unsigned higher
C and !Z
LS
Unsigned lower or same
!C or Z
GE
Signed greater than or equal
N == V
LT
Signed less than
N != V
GT
Signed greater than
!Z and (N == V)
LE
Signed less than or equal
Z or (N != V)
AL
Always (default)
Any
-
{flags}
可選的附加標記。
-
Rd
目的寄存器
-
Rn
第一個寄存器
-
Operand2
第二個寄存器或操作數
Addressing Modes(尋址方式)
常見尋址方式:
Mode | Description | Example |
立即數
hash加上整型
如#64,#0x1234
寄存器直接
寄存器中的數值作為操作數
ADD R0,R1,R2
寄存器間接
寄存器中的值作為地址,通過這個地址去取得操作數
LDR R0,[R1]
寄存器基址變址
間接尋址的擴展,地址組成改為寄存器基址+偏移量
形如[R1,#4]、[R1,R2]、[R1,#4]!、[R1],#4,後兩種執行完R1值會自加4
GNU Assembler Directives(GNU匯編指令)
Assemblers reserve special keywords for instructing the assembler how to perform special functions as the mnemonics are converted to instruction codes.
All assembler directives have names that begin with a full-stop “.”.
.section
這是最重要的指令,因為一個匯編程序一般都由data、bss、text三段組成,.section就是用來定義這每一段在內存中的區域。.data段用來存放已初始化的數據,.bss存放未初始的數據,.text存放instruction codes。這三段在內存中的大小是固定的,bss一般由用戶程序初始化0,不占用flash空間。data、bss都是靜態的全局變量,而函數內部動態的局部變量都放在堆棧中。
數據類型
Directive | Data Type |
.ascii
Text string
.asciz
Null-terminated text string
.byte
Byte value
.double
Double-precision floating-point number
.float
Single-precision floating-point number
.int
32-bit integer number
.long
32-bit integer number (same as .int)
.octa
16-byte integer number
.quad
8-byte integer number
.short
16-bit integer number
.single
Single-precision floating-point number (same as .float)
其他
Directive | Description |
.include
類似C語言#include
.equ
類似C語言中的宏定義,使用時用&
.extern
類似C語言的extern聲明
.global
聲明全局變量
.rodata
只讀數據段
.comm
Declares a common memory area for data that is not initialized
.lcomm
同.comm,只是局部的不能被global
.align
Insert 0-3 bytes of 0x00’s so that the next location will be on a 4-byte(word) boundary
.type
定義函數
.end
文件結束
ARM Assembly Instructions (ARM匯編指令)
Assembly is just like any other computer language; you must first know the basics: the syntaxof the language. After you know how to speak assembly, then comes the interesting part — vocabulary.
Thumb指令集具有高密度的優勢,其在硬件層最終也被映射到ARM指令集,所以效率也相當。
Thumb is designed as a target for C compilers, it is not designed to be used directly; rather,developers should use a higher language such as C.You must understand the principles behind the instruction set to write optimized code, but unlike the ARM ISA(Instruction Set Architecture), almost all optimization should bedone directly in C.
由於當前絕大多數的ARM核都同時支持ARM和Thumb兩種指令集,ARM開發了Unified Assembler Language (UAL)同時支持這兩個指令集。
MOVEMENT
Opcode | Description |
MOV
(Move) copies data into a register
MVN
(Move Negated) copies a negated value into a register
MOVW
(Move Wide) copies a 16-bit constant into a register while zeroing the top 16 bits of the target register
MOVT
(Move Top) copies a 16-bit constant into the top part of a register, leaving the bottom half untouched
NEG
(Negate) takes the value in Rs and performs a multiplication by –1 before placing the result into Rd
ARITHMETIC
Opcode | Description |
ADD
adds together two registers and places the result into a register
ADC
(Add with carry) adds two numbers together and also uses the carry flag
SUB
subtracts one number from another
SBC
(Subtract with carry) is like the SUB instruction
RSB
(Reverse subtract) is like SUB; RSB subtracts the value of two registers but reverses the order of the operation
RSC
(Reverse subtract with carry) is like RSB
SATURATING ARITHMETIC
這個與上述算術指令的差異在於限定了操作數的取值范圍,當出現溢出,CPSR的Q會置位,但這個Q位在後續的計算中不會被清除,也就是說如果是一系列運算,Q置位只能說明其中之一發生了溢出,但具體是哪個不清楚。
Opcode | Description |
QADD
used in the same way as the ADD instruction, but does not update condition codes
QSUB
executes a saturating subtraction
QDADD
(Saturating Double Add) calculates SAT(Rm + SAT(Rn * 2)), Q according to Addition not Doubling
QDSUB
(Saturating Double Subtraction) calculates Rm minus two times Rn. SAT(Rm – SAT(Rn * 2))
DATA TRANSFER
ARM使用的是Load/Store架構,數據必需從存儲器搬到寄存器中才能使用。
Opcode | Description |
LDR
(Load) is an instruction used for moving a single data element from system memory into a register
STR
(Store) from register to system memory
LOGICAL
Opcode | Description |
AND
按位與
ORR
按位或
EOR
(Exclusive-OR)按位異或
BIC
is the equivalent of AND NOT; in C, it is equivalent to operand1 & (!operand2)
CLZ
(Count Leading Zeros) is an instruction that takes the register Rm, counts the number of leading zeros, and places the result in Rm
COMPARE
Compare instructions are instructions that do not return any results, but set condition codes.
Opcode | Description |
CMP
compares two values, updating the CPSR. It is the equivalent to operand1 - operand2
CMN
is the equivalent to operand1 + operand2
TST
is the equivalent to operand1 & operand2
TEQ
compares operand1 and operand2 using a bitwise exclusive OR
BRANCH
Opcode | Description |
B
(Branch)is a permanent branch; no return is possible
BL
(Branch with Link) the address just after BL will be put into r14
BX
(Branch and Exchange) is an instruction that enables the program to switch between ARM state and Thumb state
BLX
(Branch with Link and Exchange) is like the BX instruction but also updates the Link register r14
MULTIPLY
Opcode | Description |
MUL
Rd = Rm * Rs
MLA
Multiply two numbers together with accumulate.Rd = (Rm * Rs) + Rn
UMULL
(Unsigned Multiply Long) RdHi,RdLo = Rm * Rs
UMLAL
(Unsigned Multiply with Accumulate Long) RdHi, RdLo = RdHi, RdLo + ( Rm * Rs )
SMULL
(Signed Multiply Long)
SMLAL
(Signed Multiply with Accumulate Long)
DIVIDE
Opcode | Description |
SDIV
(Signed Divide) SDIV r0, r1, r2 ; r0 = r1/r2
UDIV
Unsigned divide
MULTIPLE REGISTER DATA TRANSFER
Opcode | Description |
STM
is the “store multiple” instruction
LDM
is the “load multiple” instruction
BARREL SHIFTER
Opcode | Description |
LSL
(Logical Shift Left) shifts the value left by the specified amount, padding with zeros
LSR
(Logical Shift Right) is just like LSL
ASR
(Arithmetic Shift Right) is just like LSR,the difference with LSR is that ASR keeps the signed bit
ROR
(Rotate Right) rotates a number. Bits moved out of the right end of the register are rotated back into the left end
RRX
(Rotate Right Extended) is just like ROR but without the Carry flag
STACK OPERATIONS
堆棧是內存最末端的一塊區域,它的底也就是內存的最末端。堆棧主要存放函數調用需要傳遞數據。
PUSH and POP
COPROCESSOR INSTRUCTIONS
Opcode | Description |
MRC
(Move to ARM Registers from Coprocessor)
MCR
(Move to Coprocessor from ARM Registers)
MISCELLANEOUS INSTRUCTIONS
Opcode | Description |
SVC
(Supervisor Call) causes an exception and switch to Supervisor mode
NOP
is short for No Operation
MRS
(Move to ARM Register from System coprocessor)
MSR
(Move to System coprocessor register from ARM Register)
References
1. Professional-Embedded-ARM-Development
2. Professional Assembly Language