這次貼上二叉搜索樹的實現,搜索插入刪除我都實現了遞歸和非遞歸兩種版本(遞歸函數後面有_R標識)
#pragma once
#include<iostream>
using namespace std;
template<class K,class V>
struct BSTNode
{
K _key;
V _value;
BSTNode *_left;
BSTNode *_right;
BSTNode(const K& key, const V& value)
:_key(key)
,_value(value)
,_left(NULL)
,_right(NULL)
{
}
};
template<class K,class V>
class BSTree
{
typedef BSTNode<K, V> Node;
public:
BSTree()
:_root(NULL)
{
}
~BSTree()
{}
bool Insert(const K& key,const V& value)
{
if (_root == NULL)
{
_root = new Node(key, value);
}
Node *cur = _root;
Node *parent = _root;
while (cur)
{
parent = cur;
if (cur->_key > key)
{
cur = cur->_left;
}
else if (cur->_key < key)
{
cur = cur->_right;
}
else
{
return false;
}
}
if (parent->_key > key)
{
parent->_left = new Node(key, value);
}
else
{
parent->_right = new Node(key, value);
}
return true;
}
bool Insert_R(const K& key, const V& value)
{
return _Insert_R(_root,key,value);
}
bool Remove(const K& key)
{
if (_root == NULL)
{
return false;
}
if (_root->_left == NULL && _root->_right == NULL)
{
delete _root;
_root = NULL;
return true;
}
Node *del = _root;
Node *parent = _root;
while (del && del->_key != key)
{
parent = del;
if (del->_key > key)
{
del = del->_left;
}
else if (del->_key < key)
{
del = del->_right;
}
}
if (del)
{
if (del->_left == NULL || del->_right == NULL)
{
if (del->_left == NULL)
{
if (parent->_left == del)
{
parent->_left = del->_right;
}
else
{
parent->_right = del->_right;
}
}
else
{
if (parent->_left == del)
{
parent->_left = del->_left;
}
else
{
parent->_right = del->_left;
}
}
delete del;
return true;
}
else
{
Node *InOrderfirst = del->_right;
Node *parent = del;
while (InOrderfirst->_left != NULL)
{
parent = InOrderfirst;
InOrderfirst = InOrderfirst->_left;
}
swap(del->_key, InOrderfirst->_key);
swap(del->_value, InOrderfirst->_value);
if (InOrderfirst->_left == NULL)
{
if (parent->_left == InOrderfirst)
{
parent->_left = InOrderfirst->_right;
}
else
{
parent->_right = InOrderfirst->_right;
}
}
else
{
if (parent->_left == InOrderfirst)
{
parent->_left = InOrderfirst->_left;
}
else
{
parent->_right = InOrderfirst->_left;
}
}
delete InOrderfirst;
return true;
}
}
return false;
}
bool Remove_R(const K& key)
{
return _Remove_R(_root, key);
}
Node *Find(const K& key)
{
Node *cur = _root;
while (cur)
{
if (cur->_key > key)
{
cur = cur->_left;
}
else if (cur->_key < key)
{
cur = cur->_right;
}
else
{
return cur;
}
}
return NULL;
}
Node *Find_R(const K& key)
{
return _Find_R(_root,key);
}
void InOrder()
{
return _InOrder(_root);
}
protected:
bool _Remove_R(Node *&root,const K& key)
{
if (root == NULL)
{
return false;
}
if (root->_key > key)
{
return _Remove_R(root->_left, key);
}
else if (root->_key < key)
{
return _Remove_R(root->_right, key);
}
else
{
if (root->_left == NULL || root->_right == NULL)
{
if (root->_left == NULL)
{
Node *del = root;
root = root->_right;
delete del;
return true;
}
else
{
Node *del = root;
root = root->_left;
delete del;
return true;
}
}
else
{
Node *InOrderfirst = root->_right;
while (InOrderfirst->_left != NULL)
{
InOrderfirst = InOrderfirst->_left;
}
swap(InOrderfirst->_key, root->_key);
swap(InOrderfirst->_value, root->_value);
return _Remove_R(root->_right, key);
}
}
}
void _InOrder(Node *root)
{
if (root == NULL)
{
return;
}
_InOrder(root->_left);
cout << root->_key << " ";
_InOrder(root->_right);
}
Node *_Find_R(Node *root, const K& key)
{
if (root == NULL)
{
return NULL;
}
if (root->_key < key)
{
return _Find_R(root->_right, key);
}
else if (root->_key > key)
{
return _Find_R(root->_left, key);
}
else
{
return root;
}
}
bool _Insert_R(Node *&root, const K& key, const V& value)
{
if (root == NULL)
{
root = new Node(key, value);
return true;
}
if (root->_key > key)
{
return _Insert_R(root->_left, key, value);
}
else if (root->_key < key)
{
return _Insert_R(root->_right, key, value);
}
else
{
return false;
}
}
protected:
Node *_root;
};
void TestBinarySearchTree()
{
BSTree<int, int> bst1;
int a[10] = { 5,4,3,1,7,8,2,6,0,9 };
for (int i = 0; i < 10; ++i)
{
bst1.Insert(a[i],a[i]);
}
// bst1.InOrder();
//cout << endl;
//cout << bst1.Find(1)->_key << " ";
//cout << bst1.Find(5)->_key << " ";
//cout << bst1.Find(9)->_key << " ";
//cout << bst1.Find_R(1)->_key << " ";
//cout << bst1.Find_R(5)->_key << " ";
//cout << bst1.Find_R(9)->_key << " ";
//cout << endl;
bst1.Remove_R(5);
bst1.Remove_R(2);
bst1.Remove_R(8);
for (int i = 0; i < 10; ++i)
{
bst1.Remove_R(a[i]);
}
bst1.InOrder();
bst1.Remove(5);
bst1.Remove(2);
bst1.Remove(8);
for (int i = 0; i < 10; ++i)
{
bst1.Remove(a[i]);
}
bst1.InOrder();
}
二叉搜索樹的性質:
插入步驟很簡單,就是從根節點開始,進行比較,然後我那個左(右)子樹走,走到葉子節點之後,鏈接上就可以了
尋找也是類似插入的,很簡單
刪除就要略微繁瑣一點有三種情況(其實直接就可以歸類為兩種)