網上的MapReduce WordCount教程對於如何編譯WordCount.java幾乎是一筆帶過… 而有寫到的,大多又是 0.20 等舊版本版本的做法,即 javac -classpath /usr/local/Hadoop/hadoop-1.0.1/hadoop-core-1.0.1.jar WordCount.java,但較新的 2.X 版本中,已經沒有 hadoop-core*.jar 這個文件,因此編輯和打包自己的MapReduce程序與舊版本有所不同。
本文以 Hadoop 2.4.1 環境下的WordCount實例來介紹 2.x 版本中如何編輯自己的MapReduce程序。
Hadoop 2.x 版本中jar不再集中在一個 hadoop-core*.jar 中,而是分成多個 jar,如運行WordCount實例需要如下三個 jar:
將上述 jar 添加至 classpath 路徑:
export CLASSPATH="$HADOOP_HOME/share/hadoop/common/hadoop-common-2.4.1.jar:$HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.4.1.jar:$HADOOP_HOME/share/hadoop/common/lib/commons-cli-1.2.jar:$CLASSPATH"
接著就可以編譯 WordCount.java 了(使用的是 2.4.1 源碼中的 WordCount.java,源碼在文本最後面):
javac WordCount.java
編譯時會有警告,可以忽略。編譯後可以看到生成了幾個.class文件。
使用Javac編譯自己的MapReduce程序
接著把 .class 文件打包成 jar,才能在 Hadoop 中運行:
jar -cvf WordCount.jar ./WordCount*.class
打包完成後,運行試試,創建幾個輸入文件:
Mkdir input
echo "echo of the rainbow" > ./input/file0
echo "the waiting game" > ./input/file1
創建WordCount的輸入
開始運行:
/usr/local/hadoop/bin/hadoop jar WordCount.jar WordCount input output
不過這邊可能會遇到如下的提示 Exception in thread "main" java.lang.NoClassDefFoundError: WordCount :
提示找不到 WordCount 類
因為程序中聲明了 package ,所以在命令中也要 org.apache.hadoop.examples 寫完整:
/usr/local/hadoop/bin/hadoop jar WordCount.jar org.apache.hadoop.examples.WordCount input output
正確運行後的結果如下:
WordCount 運行結果
使用命令行編譯運行MapReduce程序畢竟有些麻煩,修改一次就得手動編譯、打包一次,使用Eclipse編譯運行MapReduce程序會更加方便。
文件位於 hadoop-2.4.1-src\hadoop-mapreduce-project\hadoop-mapreduce-examples\src\main\java\org\apache\hadoop\examples 中:
/*** Licensed to the Apache Software Foundation (ASF) under one* or more contributor license agreements. See the NOTICE file* distributed with this work for additional information* regarding copyright ownership. The ASF licenses this file* to you under the Apache License, Version 2.0 (the* "License"); you may not use this file except in compliance* with the License. You may obtain a copy of the License at** http://www.apache.org/licenses/LICENSE-2.0** Unless required by applicable law or agreed to in writing, software* distributed under the License is distributed on an "AS IS" BASIS,* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.* See the License for the specific language governing permissions and* limitations under the License.*/package org.apache.hadoop.examples;import java.io.IOException;import java.util.StringTokenizer;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.IntWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Job;import org.apache.hadoop.mapreduce.Mapper;import org.apache.hadoop.mapreduce.Reducer;import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import org.apache.hadoop.util.GenericOptionsParser;publicclassWordCount{publicstaticclassTokenizerMapperextendsMapper<Object,Text,Text,IntWritable>{privatefinalstaticIntWritable one =newIntWritable(1);privateText word =newText();publicvoid map(Object key,Text value,Context context)throwsIOException,InterruptedException{StringTokenizer itr =newStringTokenizer(value.toString());while(itr.hasMoreTokens()){word.set(itr.nextToken());context.write(word, one);}}}publicstaticclassIntSumReducerextendsReducer<Text,IntWritable,Text,IntWritable>{privateIntWritable result =newIntWritable();publicvoid reduce(Text key,Iterable<IntWritable> values,Context context)throwsIOException,InterruptedException{int sum =0;for(IntWritable val : values){sum += val.get();}result.set(sum);context.write(key, result);}}publicstaticvoid main(String[] args)throwsException{Configuration conf =newConfiguration();String[] otherArgs =newGenericOptionsParser(conf, args).getRemainingArgs();if(otherArgs.length !=2){System.err.println("Usage: wordcount <in> <out>");System.exit(2);}Job job =newJob(conf,"word count");job.setJarByClass(WordCount.class);job.setMapperClass(TokenizerMapper.class);job.setCombinerClass(IntSumReducer.class);job.setReducerClass(IntSumReducer.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(IntWritable.class);FileInputFormat.addInputPath(job,newPath(otherArgs[0]));FileOutputFormat.setOutputPath(job,newPath(otherArgs[1]));System.exit(job.waitForCompletion(true)?0:1);}}CentOS安裝和配置Hadoop2.2.0 http://www.linuxidc.com/Linux/2014-01/94685.htm
Ubuntu 13.04上搭建Hadoop環境 http://www.linuxidc.com/Linux/2013-06/86106.htm
Ubuntu 12.10 +Hadoop 1.2.1版本集群配置 http://www.linuxidc.com/Linux/2013-09/90600.htm
Ubuntu上搭建Hadoop環境(單機模式+偽分布模式) http://www.linuxidc.com/Linux/2013-01/77681.htm
Ubuntu下Hadoop環境的配置 http://www.linuxidc.com/Linux/2012-11/74539.htm
單機版搭建Hadoop環境圖文教程詳解 http://www.linuxidc.com/Linux/2012-02/53927.htm
搭建Hadoop環境(在Winodws環境下用虛擬機虛擬兩個Ubuntu系統進行搭建) http://www.linuxidc.com/Linux/2011-12/48894.htm
更多Hadoop相關信息見Hadoop 專題頁面 http://www.linuxidc.com/topicnews.aspx?tid=13