歡迎來到Linux教程網
Linux教程網
Linux教程網
Linux教程網
您现在的位置: Linux教程網 >> UnixLinux >  >> Linux編程 >> Linux編程

使用命令行編譯打包運行自己的MapReduce程序 Hadoop2.4.1

網上的MapReduce WordCount教程對於如何編譯WordCount.java幾乎是一筆帶過… 而有寫到的,大多又是 0.20 等舊版本版本的做法,即 javac -classpath /usr/local/Hadoop/hadoop-1.0.1/hadoop-core-1.0.1.jar WordCount.java,但較新的 2.X 版本中,已經沒有 hadoop-core*.jar 這個文件,因此編輯和打包自己的MapReduce程序與舊版本有所不同。

本文以 Hadoop 2.4.1 環境下的WordCount實例來介紹 2.x 版本中如何編輯自己的MapReduce程序。

Hadoop 2.x 版本中的依賴 jar

Hadoop 2.x 版本中jar不再集中在一個 hadoop-core*.jar 中,而是分成多個 jar,如運行WordCount實例需要如下三個 jar:

  • $HADOOP_HOME/share/hadoop/common/hadoop-common-2.4.1.jar
  • $HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.4.1.jar
  • $HADOOP_HOME/share/hadoop/common/lib/commons-cli-1.2.jar

編譯、打包 Hadoop MapReduce 程序

將上述 jar 添加至 classpath 路徑:

export CLASSPATH="$HADOOP_HOME/share/hadoop/common/hadoop-common-2.4.1.jar:$HADOOP_HOME/share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.4.1.jar:$HADOOP_HOME/share/hadoop/common/lib/commons-cli-1.2.jar:$CLASSPATH"

 

接著就可以編譯 WordCount.java 了(使用的是 2.4.1 源碼中的 WordCount.java,源碼在文本最後面):

javac WordCount.java

編譯時會有警告,可以忽略。編譯後可以看到生成了幾個.class文件。

使用Javac編譯自己的MapReduce程序

接著把 .class 文件打包成 jar,才能在 Hadoop 中運行:

jar -cvf WordCount.jar ./WordCount*.class

打包完成後,運行試試,創建幾個輸入文件:

Mkdir input
echo "echo of the rainbow" > ./input/file0
echo "the waiting game" > ./input/file1

創建WordCount的輸入

開始運行:

/usr/local/hadoop/bin/hadoop jar WordCount.jar WordCount input output

不過這邊可能會遇到如下的提示 Exception in thread "main" java.lang.NoClassDefFoundError: WordCount

提示找不到 WordCount 類

因為程序中聲明了 package ,所以在命令中也要 org.apache.hadoop.examples 寫完整:

/usr/local/hadoop/bin/hadoop jar WordCount.jar org.apache.hadoop.examples.WordCount input output

正確運行後的結果如下:

WordCount 運行結果

進階:使用Eclipse編譯運行MapReduce程序

使用命令行編譯運行MapReduce程序畢竟有些麻煩,修改一次就得手動編譯、打包一次,使用Eclipse編譯運行MapReduce程序會更加方便。

WordCount.java 源碼

文件位於 hadoop-2.4.1-src\hadoop-mapreduce-project\hadoop-mapreduce-examples\src\main\java\org\apache\hadoop\examples 中:

  1. /**
  2. * Licensed to the Apache Software Foundation (ASF) under one
  3. * or more contributor license agreements. See the NOTICE file
  4. * distributed with this work for additional information
  5. * regarding copyright ownership. The ASF licenses this file
  6. * to you under the Apache License, Version 2.0 (the
  7. * "License"); you may not use this file except in compliance
  8. * with the License. You may obtain a copy of the License at
  9. *
  10. * http://www.apache.org/licenses/LICENSE-2.0
  11. *
  12. * Unless required by applicable law or agreed to in writing, software
  13. * distributed under the License is distributed on an "AS IS" BASIS,
  14. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  15. * See the License for the specific language governing permissions and
  16. * limitations under the License.
  17. */
  18. package org.apache.hadoop.examples;
  19. import java.io.IOException;
  20. import java.util.StringTokenizer;
  21. import org.apache.hadoop.conf.Configuration;
  22. import org.apache.hadoop.fs.Path;
  23. import org.apache.hadoop.io.IntWritable;
  24. import org.apache.hadoop.io.Text;
  25. import org.apache.hadoop.mapreduce.Job;
  26. import org.apache.hadoop.mapreduce.Mapper;
  27. import org.apache.hadoop.mapreduce.Reducer;
  28. import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
  29. import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
  30. import org.apache.hadoop.util.GenericOptionsParser;
  31. publicclassWordCount{
  32. publicstaticclassTokenizerMapper
  33. extendsMapper<Object,Text,Text,IntWritable>{
  34. privatefinalstaticIntWritable one =newIntWritable(1);
  35. privateText word =newText();
  36. publicvoid map(Object key,Text value,Context context
  37. )throwsIOException,InterruptedException{
  38. StringTokenizer itr =newStringTokenizer(value.toString());
  39. while(itr.hasMoreTokens()){
  40. word.set(itr.nextToken());
  41. context.write(word, one);
  42. }
  43. }
  44. }
  45. publicstaticclassIntSumReducer
  46. extendsReducer<Text,IntWritable,Text,IntWritable>{
  47. privateIntWritable result =newIntWritable();
  48. publicvoid reduce(Text key,Iterable<IntWritable> values,
  49. Context context
  50. )throwsIOException,InterruptedException{
  51. int sum =0;
  52. for(IntWritable val : values){
  53. sum += val.get();
  54. }
  55. result.set(sum);
  56. context.write(key, result);
  57. }
  58. }
  59. publicstaticvoid main(String[] args)throwsException{
  60. Configuration conf =newConfiguration();
  61. String[] otherArgs =newGenericOptionsParser(conf, args).getRemainingArgs();
  62. if(otherArgs.length !=2){
  63. System.err.println("Usage: wordcount <in> <out>");
  64. System.exit(2);
  65. }
  66. Job job =newJob(conf,"word count");
  67. job.setJarByClass(WordCount.class);
  68. job.setMapperClass(TokenizerMapper.class);
  69. job.setCombinerClass(IntSumReducer.class);
  70. job.setReducerClass(IntSumReducer.class);
  71. job.setOutputKeyClass(Text.class);
  72. job.setOutputValueClass(IntWritable.class);
  73. FileInputFormat.addInputPath(job,newPath(otherArgs[0]));
  74. FileOutputFormat.setOutputPath(job,newPath(otherArgs[1]));
  75. System.exit(job.waitForCompletion(true)?0:1);
  76. }
  77. }

CentOS安裝和配置Hadoop2.2.0  http://www.linuxidc.com/Linux/2014-01/94685.htm

Ubuntu 13.04上搭建Hadoop環境 http://www.linuxidc.com/Linux/2013-06/86106.htm

Ubuntu 12.10 +Hadoop 1.2.1版本集群配置 http://www.linuxidc.com/Linux/2013-09/90600.htm

Ubuntu上搭建Hadoop環境(單機模式+偽分布模式) http://www.linuxidc.com/Linux/2013-01/77681.htm

Ubuntu下Hadoop環境的配置 http://www.linuxidc.com/Linux/2012-11/74539.htm

單機版搭建Hadoop環境圖文教程詳解 http://www.linuxidc.com/Linux/2012-02/53927.htm

搭建Hadoop環境(在Winodws環境下用虛擬機虛擬兩個Ubuntu系統進行搭建) http://www.linuxidc.com/Linux/2011-12/48894.htm

更多Hadoop相關信息見Hadoop 專題頁面 http://www.linuxidc.com/topicnews.aspx?tid=13

Copyright © Linux教程網 All Rights Reserved