(二叉)堆是一個數組,它可以被看成一個近似的完全二叉樹。二叉堆可以分為兩種形式:最大堆和最小堆。若將記錄按從大到小排列,建“小”頂堆。若將記錄按從小到大排,建“大”頂堆。
說明:在堆排序算法中,我們使用的是最大堆,最小堆通常用於構造優先隊列。
算法分析:時間復雜度是O(nlogn)。堆排序屬於原址排序:任何時候都只需要常數個額外的元素空間存儲臨時數據。堆排序是不穩定的排序算法。
#include <stdio.h>
#define LEFT(i) 2 * i
#define RIGHT(i) 2 * i + 1
void MaxHeapAjust(int A[], int i, int len) //調整節點i滿足最大堆性質
{
int l = LEFT(i);
int r = RIGHT(i);
int largest, tmp;
if (l <= len && A[l - 1] > A[i - 1])
{
largest = l;
}
else
{
largest = i;
}
if (r <= len && A[r - 1] > A[largest - 1])
{
largest = r;
}
if (i != largest)
{
tmp = A[i - 1];
A[i - 1] = A[largest - 1];
A[largest - 1] = tmp;
MaxHeapAjust(A, largest, len);
}
}
void BuildMaxHeap(int A[], int len) //構造最大堆
{
for (int i = len / 2; i > 0; i--)
{
MaxHeapAjust(A, i, len);
}
}
void HeapSort(int A[], int len) //堆排序
{
int tmp;
BuildMaxHeap(A, len);
for (int i = len; i > 1; i--)
{
tmp = A[i - 1];
A[i - 1] = A[0];
A[0] = tmp;
MaxHeapAjust(A, 1, i - 1);
}
}
int main(void)
{
int A[] = {4, 1, 3, 2, 16, 9, 10, 14, 8, 7};
HeapSort(A, 10);
for (int i = 0; i < 10; i++)
{
printf("%d ", A[i]);
}
printf("\n");
return 0;
}
二叉樹的常見問題及其解決程序 http://www.linuxidc.com/Linux/2013-04/83661.htm
【遞歸】二叉樹的先序建立及遍歷 http://www.linuxidc.com/Linux/2012-12/75608.htm
在JAVA中實現的二叉樹結構 http://www.linuxidc.com/Linux/2008-12/17690.htm
【非遞歸】二叉樹的建立及遍歷 http://www.linuxidc.com/Linux/2012-12/75607.htm
二叉樹遞歸實現與二重指針 http://www.linuxidc.com/Linux/2013-07/87373.htm
二叉樹先序中序非遞歸算法 http://www.linuxidc.com/Linux/2014-06/102935.htm
輕松搞定面試中的二叉樹題目 http://www.linuxidc.com/linux/2014-07/104857.htm