歡迎來到Linux教程網
Linux教程網
Linux教程網
Linux教程網
您现在的位置: Linux教程網 >> UnixLinux >  >> Linux編程 >> Linux編程

如何用Hadoop計算平均值

如何用Hadoop計算平均值

數據

data.txt
a 2
a 3
a 4
b 5
b 6
b 7

代碼

import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

public class Average {

 public static class TokenizerMapper extends
   Mapper<Object, Text, Text, Text> {

  private final static IntWritable one = new IntWritable(1);
  private Text word = new Text();

  public void map(Object key, Text value, Context context)
    throws IOException, InterruptedException {
   StringTokenizer itr = new StringTokenizer(value.toString());
   while (itr.hasMoreTokens()) {
    word.set(itr.nextToken());
    if (itr.hasMoreTokens()) {
     context.write(word, new Text(itr.nextToken() + ",1"));
    }
   }
  }
 }

 static class AverageCombine extends Reducer<Text, Text, Text, Text> {
  public void reduce(Text key, Iterable<Text> values, Context context)
    throws IOException, InterruptedException {
   int sum = 0, cnt = 0;
   for (Text val : values) {
    String[] s1 = val.toString().split(",");
    sum += Integer.parseInt(s1[0]);
    cnt += Integer.parseInt(s1[1]);
   }
   String s;
   System.out.println("Combine" + (s = new String(sum + "," + cnt)));
   context.write(key, new Text(new String(sum + "," + cnt)));
  }
 }

 static class AverageReducer extends
   Reducer<Text, Text, Text, DoubleWritable> {
  public void reduce(Text key, Iterable<Text> values, Context context)
    throws IOException, InterruptedException {
   int sum = 0, cnt = 0;
   for (Text val : values) {
    String[] s = val.toString().split(",");
    sum += Integer.parseInt(s[0]);
    cnt += Integer.parseInt(s[1]);
   }
   String s;
   System.out.println("reduce"
     + (s = new String(key + "," + (sum * 1.0 / cnt))));
   context.write(key, new DoubleWritable(sum * 1.0 / cnt));
  }
 }

 public static void main(String[] args) throws Exception {
  Configuration conf = new Configuration();
  String[] otherArgs = args;
  if (otherArgs.length != 2) {
   System.err.println("Usage:Data Average <in> <out>");
   System.exit(2);
  }
  Job job = new Job(conf, "Data Average");
  job.setJarByClass(Average.class);
  job.setMapperClass(TokenizerMapper.class);
  job.setCombinerClass(AverageCombine.class);
  job.setReducerClass(AverageReducer.class);
  job.setOutputKeyClass(Text.class);
  job.setOutputValueClass(Text.class);
  FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
  FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
  System.exit(job.waitForCompletion(true) ? 0 : 1);
 }
}

執行

bin/hadoop jar Average.jar Average data.txt out

結果

a 3.0
b 6.0

更多Hadoop相關信息見Hadoop 專題頁面 http://www.linuxidc.com/topicnews.aspx?tid=13

Copyright © Linux教程網 All Rights Reserved