一、新增特性介紹
實際上,Android仍然是利用了標准linux的休眠喚醒系統,只不過添加了一些使用上的新特性,early suspend、late resume、wake lock。
Early suspend - 這個機制定義了在suspend的早期,關閉顯示屏的時候,一些和顯示屏相關的設備,比如背光、重力感應器和觸摸屏等設備都應該被關掉,但是此時系統可能還有持有wake lock的任務在運行,如音樂播放,電話,或者掃描sd卡上的文件等,這個時候整個系統還不能進入真正睡眠,直到所有的wake lock都沒釋放。在嵌入式設備中,悲觀是一個很大的電源消耗,所有android加入了這種機制。
Late resume - 這個機制定義了在resume的後期,也就是喚醒源已經將處理器喚醒,標准linux的喚醒流程已經走完了,在android上層系統識別出這個物理上的喚醒源是上層定義的,那麼上層將會發出late resume的命令給下層,這個時候將會調用相關設備注冊的late resume回調函數。
Wake lock - wakelock在android的電源管理系統中扮演一個核心的角色,wakelock是一種鎖的機制, 只要有task拿著這個鎖, 系統就無法進入休眠, 可以被用戶態進程和內核線程獲得。這個鎖可以是有超時的或者是沒有超時的, 超時的鎖會在時間過去以後自動解鎖。如果沒有鎖了或者超時了, 內核就會啟動標准linux的那套休眠機制機制來進入休眠。
二、kernel層源碼解析 - early suspend 和 late resume實現
相關源碼:
kernel/kernel/power/main.c
kernel/kernel/power/earlysuspend.c
kernel/kernel/power/wakelock.c
kernel/kernel/power/userwakelock.c
kernel/kernel/power/suspend.c
之前標准的linux的sysfs的接口只需要一個state就夠了,現在至少需要3個接口文件:state、wake_lock、wake_unlock。現在為了配合android為休眠喚醒添加的幾種新特性,可以填入文件state的模式又多了一種:on, 標准android系統中只支持state的on和mem模式,其余的暫不支持。wake_lock和wake_unlock接口對應的讀寫函數在文件userwakelock.c中,對wakelock.c中的create wakelock或者release wakelock進行了封裝,供用戶空間來使用。
如果上層用戶執行:echo xxx(on or mem) > sys/power/state的話,將會調用到如下函數:
- static ssize_t state_store(struct kobject *kobj, struct kobj_attribute *attr,
-
- const char *buf, size_t n)
-
- {
-
- #ifdef CONFIG_SUSPEND // set
-
- #ifdef CONFIG_EARLYSUSPEND //set
-
- suspend_state_t state = PM_SUSPEND_ON; // for early suspend and late resume
-
- #else
-
- suspend_state_t state = PM_SUSPEND_STANDBY;
-
- #endif
-
- const char * const *s;
-
- #endif
-
- char *p;
-
- int len;
-
- int error = -EINVAL;
-
-
-
- p = memchr(buf, '/n', n);
-
- len = p ? p - buf : n;
-
-
-
- /* First, check if we are requested to hibernate */
-
- if (len == 4 && !strncmp(buf, "disk", len)) {
-
- error = hibernate(); // 檢查是否要求進入disk省電模式,暫時不支持
-
- goto Exit;
-
- }
-
-
-
- #ifdef CONFIG_SUSPEND // def
-
- for (s = &pm_states[state]; state < PM_SUSPEND_MAX; s++, state++) {
-
- if (*s && len == strlen(*s) && !strncmp(buf, *s, len))
-
- break;
-
- }
-
- if (state < PM_SUSPEND_MAX && *s)
-
- #ifdef CONFIG_EARLYSUSPEND
-
- if (state == PM_SUSPEND_ON || valid_state(state)) {
-
- // 需要經過平台pm.c文件定義的模式支持檢查函數,mtk只支持mem,同時如果是android發送出來的late resume命令(on),這裡也會放行,往下執行
-
- error = 0;
-
- request_suspend_state(state); // android休眠喚醒的路線
-
- }
-
- #else
-
- error = enter_state(state);// 標准linux休眠喚醒的路線
-
- #endif
-
- #endif
-
-
-
- Exit:
-
- return error ? error : n;
-
- }
-
-
-
- @ kernel/kernel/power/earlysuspend.c
-
- enum {
-
- DEBUG_USER_STATE = 1U << 0,
-
- DEBUG_SUSPEND = 1U << 2,
-
- };
-
- int Earlysuspend_debug_mask = DEBUG_USER_STATE;
-
- module_param_named(Earlysuspend_debug_mask, Earlysuspend_debug_mask, int, S_IRUGO | S_IWUSR | S_IWGRP);
-
-
-
- static DEFINE_MUTEX(early_suspend_lock);
-
- static LIST_HEAD(early_suspend_handlers);
-
- static void early_sys_sync(struct work_struct *work);
-
- static void early_suspend(struct work_struct *work);
-
- static void late_resume(struct work_struct *work);
-
- static DECLARE_WORK(early_sys_sync_work, early_sys_sync);
-
- static DECLARE_WORK(early_suspend_work, early_suspend);
-
- static DECLARE_WORK(late_resume_work, late_resume);
-
- static DEFINE_SPINLOCK(state_lock);
-
- enum {
-
- SUSPEND_REQUESTED = 0x1,
-
- SUSPENDED = 0x2,
-
- SUSPEND_REQUESTED_AND_SUSPENDED = SUSPEND_REQUESTED | SUSPENDED,
-
- };
-
- static int state; // 初始化為0
-
-
-
- static DECLARE_COMPLETION(fb_drv_ready);
-
-
-
- void request_suspend_state(suspend_state_t new_state)
-
- {
-
- unsigned long irqflags;
-
- int old_sleep;
-
-
-
- spin_lock_irqsave(&state_lock, irqflags);
-
- old_sleep = state & SUSPEND_REQUESTED; // state = 1 or 3
-
- // state的值會在0->1->3->2->0循環變化,後面分析代碼都可以看出這些值代表系統目前處於什麼階段,簡單得說就是:正常->准備進early suspend->開始early suspend並且對名為mian的wakelock解鎖,如果此時沒有其余wakelock處於lock狀態,那麼系統就走linux的休眠喚醒路線讓整個系統真正休眠,直到喚醒源發生,然後將處理器和linux層喚醒。之後android層判斷本次底層醒來是由於我所定義的喚醒源引起的嗎?如果不是,android將不予理會,過段時間沒有wakelock鎖,系統會再次走linux的休眠路線進入休眠。如果是,那麼android上層就會寫一個on的指令到state接口中,同樣是會調用到函數request_suspend_state() -> 准備執行late resume -> 開始執行late resume,之後整個系統就這樣被喚醒了。
-
- if (Earlysuspend_debug_mask & DEBUG_USER_STATE) {
-
- struct timespec ts; // 打印出debug信息
-
- struct rtc_time tm;
-
- getnstimeofday(&ts);
-
- rtc_time_to_tm(ts.tv_sec, &tm);
-
- pr_info("[request_suspend_state]: %s (%d->%d) at %lld "
-
- "(%d-%02d-%02d %02d:%02d:%02d.%09lu UTC)/n",
-
- new_state != PM_SUSPEND_ON ? "sleep" : "wakeup",
-
- requested_suspend_state, new_state,
-
- ktime_to_ns(ktime_get()),
-
- tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
-
- tm.tm_hour, tm.tm_min, tm.tm_sec, ts.tv_nsec);
-
- }
-
- // eg: [request_suspend_state]: sleep (0->3) at 97985478409 (2010-01-03 09:52:59.637902305 UTC), 這裡對時間的獲取和處理,在其他地方可以參考
-
- // ready to enter earlysuspend
-
- if (!old_sleep && new_state != PM_SUSPEND_ON) { // SUSEpnd會進入這裡
-
- state |= SUSPEND_REQUESTED; // state = 1
-
- pr_info("[request_suspend_state]:
-
- sys_sync_work_queue early_sys_sync_work/n");
-
- queue_work(sys_sync_work_queue, &early_sys_sync_work);
-
- pr_info("[request_suspend_state]: suspend_work_queue early_suspend_work/n");
-
- queue_work(suspend_work_queue, &early_suspend_work);
-
- // 在wakelocks_init()函數(wakelock.c)中會創建這兩個工作隊列和工作者線程來專門負責處理sys_sync和early suspend的工作。關於工作隊列的詳情參考我工作隊列的文章
-
- }
-
- // ready to enter lateresume
-
- else if (old_sleep && new_state == PM_SUSPEND_ON) {
-
- state &= ~SUSPEND_REQUESTED; // state = 2
-
- wake_lock(&main_wake_lock); // 對main wakelock上鎖
-
- pr_info("[request_suspend_state]: suspend_work_queue late_resume_work/n" );
-
- if (queue_work(suspend_work_queue, &late_resume_work)) {
-
- // 提交late resume的工作項
-
- //
-
- // In order to synchronize the backlight turn on timing,
-
- // block the thread and wait for fb driver late_resume()
-
- // callback function is completed
-
- //
-
- wait_for_completion(&fb_drv_ready);
-
- // 等待完成量fb_drv_ready,他會在late resume結束之後完成
-
- }
-
- }
-
- requested_suspend_state = new_state;
-
- // 存儲本次休眠或者是喚醒的狀態,供下次休眠或者喚醒使用
-
- spin_unlock_irqrestore(&state_lock, irqflags);
-
- }
在系統suspend的時候提交的兩個工作項會陸續被執行到,那麼下面就來看一下執行early suspend的關鍵函數。
- static void early_sys_sync(struct work_struct *work)
-
- {
-
- wake_lock(&sys_sync_wake_lock);
-
- printk("[sys_sync work] start/n");
-
- sys_sync(); // 同步文件系統
-
- printk("[sys_sync wrok] done/n");
-
- wake_unlock(&sys_sync_wake_lock);
-
- }
-
-
-
- static void early_suspend(struct work_struct *work)
-
- {
-
- struct early_suspend *pos;
-
- unsigned long irqflags;
-
- int abort = 0;
-
-
-
- mutex_lock(&early_suspend_lock);
-
- spin_lock_irqsave(&state_lock, irqflags);
-
- if (state == SUSPEND_REQUESTED)
-
- state |= SUSPENDED; // state = 3
-
- else
-
- abort = 1;
-
- spin_unlock_irqrestore(&state_lock, irqflags);
-
-
-
- if (abort) { // suspend 中止退出
-
- if (Earlysuspend_debug_mask & DEBUG_SUSPEND)
-
- pr_info("[early_suspend]: abort, state %d/n", state);
-
- mutex_unlock(&early_suspend_lock);
-
- goto abort;
-
- }
-
-
-
- if (Earlysuspend_debug_mask & DEBUG_SUSPEND)
-
- pr_info("[early_suspend]: call handlers/n");
-
- list_for_each_entry(pos, &early_suspend_handlers, link) {
-
- if (pos->suspend != NULL)
-
- pos->suspend(pos);
-
- }
-
- // 函數register_early_suspend()會將每一個early suspend項以優先級大小注冊到鏈表early_suspend_handlers中,這裡就是一次取出,然後執行對應的early suspend回調函數
-
- mutex_unlock(&early_suspend_lock);
-
-
-
- // Remove sys_sync from early_suspend,
-
- // and use work queue to complete sys_sync
-
-
-
- abort:
-
- spin_lock_irqsave(&state_lock, irqflags);
-
- if (state == SUSPEND_REQUESTED_AND_SUSPENDED)
-
- {
-
- pr_info("[early_suspend]: wake_unlock(main)/n");
-
- wake_unlock(&main_wake_lock);
-
- // main wakelock 解鎖。看到這裡,好像系統執行了early suspend之後就沒有往下執行標准linux的suspend流程了,其實不是,android的做法是,不是你執行完了early suspend 的回調就可以馬上走標准linux的suspend流程,而是會檢查還有沒有wakelock被持有,如果所有wakelock全是解鎖狀態,那麼就會執行標准linux的suspend步驟。
-
- }
-
- spin_unlock_irqrestore(&state_lock, irqflags);
-
- }
-
-
-
- static void late_resume(struct work_struct *work)
-
- {
-
- struct early_suspend *pos;
-
- unsigned long irqflags;
-
- int abort = 0;
-
- int completed = 0;
-
-
-
- mutex_lock(&early_suspend_lock);
-
- spin_lock_irqsave(&state_lock, irqflags);
-
-
-
- // return back from suspend
-
- if (state == SUSPENDED)
-
- state &= ~SUSPENDED; // state = 0
-
- else
-
- abort = 1;
-
- spin_unlock_irqrestore(&state_lock, irqflags);
-
-
-
- if (abort) {
-
- if (Earlysuspend_debug_mask & DEBUG_SUSPEND)
-
- pr_info("[late_resume]: abort, state %d/n", state);
-
- goto abort;
-
- }
-
- if (Earlysuspend_debug_mask & DEBUG_SUSPEND)
-
- pr_info("[late_resume]: call handlers/n");
-
- list_for_each_entry_reverse(pos, &early_suspend_handlers, link)
-
- {
-
- if (!completed && pos->level < EARLY_SUSPEND_LEVEL_DISABLE_FB) {
-
- complete(&fb_drv_ready);
-
- completed = 1;
-
- }
-
- if (pos->resume != NULL)
-
- pos->resume(pos);
-
- }
-
- // 以和early suspend的逆序執行鏈表early_suspend_handlers上的late resume回調函數
-
- if (Earlysuspend_debug_mask & DEBUG_SUSPEND)
-
- pr_info("[late_resume]: done/n");
-
- abort:
-
- if (!completed)
-
- complete(&fb_drv_ready); // 設置完成量ok
-
- mutex_unlock(&early_suspend_lock);
-
- }