詳細的概念性解釋就不說了,如果對vmalloc沒有一點概念的話,可以稍微找些資料了解下,這裡主要就是分析下在內核中vmalloc的實現;
直接物理內存映射(內核邏輯地址)-- 8 MB -- vm -- 1 page -- vm -- 1page --vm ......
大概就是這樣:邏輯地址以high_memory為結束邊界;然後是 8MB 的空洞(主要是防止指針越界訪問);接著就是 VMALLOC_START為邊界 開始了vmalloc 區域,該區域有多個vm小區域組成,每個小區域之間有1頁(一個page大小)的空洞地址,作用還是防止越界訪問;結束是以VMALLOC_END,後面還有個空洞地址,接著最後就是固定映射和臨時映射的區域了;
結構體:
struct vm_struct { struct vm_struct *next;//所有vm_struct鏈接的鏈表,vmlist是表頭 void *addr;//分配得到的子區域在虛擬地址空間中的起始地址 unsigned long size;//表示區域長度 unsigned long flags;//標識 struct page **pages;//這是個指針數組,每個數組元素都是一個被映射的page指針 unsigned int nr_pages;//表示多少個page被映射 phys_addr_t phys_addr; const void *caller; };這個結構體和進程虛擬地址空間的vma非常相識,值得注意;
下面這個結構體是用來管理kvm地址的
struct vmap_area { unsigned long va_start; unsigned long va_end; unsigned long flags; struct rb_node rb_node; /* address sorted rbtree */ struct list_head list; /* address sorted list */ struct list_head purge_list; /* "lazy purge" list */ struct vm_struct *vm; struct rcu_head rcu_head; };
/** * vmalloc - allocate virtually contiguous memory * @size: allocation size * Allocate enough pages to cover @size from the page level * allocator and map them into contiguous kernel virtual space. * * For tight control over page level allocator and protection flags * use __vmalloc() instead. */ void *vmalloc(unsigned long size) { return __vmalloc_node_flags(size, NUMA_NO_NODE, GFP_KERNEL | __GFP_HIGHMEM);//從高內存分配 } static inline void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags) { return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, __builtin_return_address(0)); }__builtin_return_address(0)的含義是,得到當前函數返回地址,即此函數被別的函數調用,然後此函數執行完畢後,返回,所謂返回地址就是那時候的地址。__builtin_return_address(1)的含義是,得到當前函數的調用者的返回地址。注意是調用者的返回地址,而不是函數起始地址。
/** * __vmalloc_node - allocate virtually contiguous memory * @size: allocation size * @align: desired alignment * @gfp_mask: flags for the page level allocator * @prot: protection mask for the allocated pages * @node: node to use for allocation or NUMA_NO_NODE * @caller: caller's return address * * Allocate enough pages to cover @size from the page level * allocator with @gfp_mask flags. Map them into contiguous * kernel virtual space, using a pagetable protection of @prot. */ static void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask, pgprot_t prot, int node, const void *caller) { return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END, gfp_mask, prot, node, caller); }
這是個主要函數,說明下參數:
unsigned long size :表示要分配的內存大小;
unsigned long align:表示以什麼對齊,到這裡是 1;
unsigned long start:表示映射區域從什麼地方開始查找,這裡為:VMALLOC_START;
unsigned long end :表示映射區域從什麼地方結束查找,這裡為:VMALLOC_END;
gfp_t gfp_mask:表示分配的標識,這裡為:GFP_KERNEL | __GFP_HIGHMEM;
pgprot_t prot:表示區域的保護模式,這裡為:PAGE_KERNEL;
int node:表示分配節點,這裡為:-1;
const void *caller:表示函數地址,這裡表示的是__vmalloc_node的返回地址
/** * __vmalloc_node_range - allocate virtually contiguous memory * @size: allocation size * @align: desired alignment * @start: vm area range start * @end: vm area range end * @gfp_mask: flags for the page level allocator * @prot: protection mask for the allocated pages * @node: node to use for allocation or NUMA_NO_NODE * @caller: caller's return address * * Allocate enough pages to cover @size from the page level * allocator with @gfp_mask flags. Map them into contiguous * kernel virtual space, using a pagetable protection of @prot. */ void *__vmalloc_node_range(unsigned long size, unsigned long align, unsigned long start, unsigned long end, gfp_t gfp_mask, pgprot_t prot, int node, const void *caller) { struct vm_struct *area; void *addr; unsigned long real_size = size; size = PAGE_ALIGN(size);//size必須頁面對齊,因為是映射到頁面上,所以必須的頁面對齊 if (!size || (size >> PAGE_SHIFT) > totalram_pages)//大小檢查下 goto fail; area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNLIST, start, end, node, gfp_mask, caller);//從這裡已經得到area了(也可能為NULL) if (!area) goto fail; addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller); if (!addr) return NULL; /* * In this function, newly allocated vm_struct has VM_UNLIST flag. * It means that vm_struct is not fully initialized. * Now, it is fully initialized, so remove this flag here. */ clear_vm_unlist(area);//已經把所有成員都初始化好了,可以清除VM_UNLIST標識了 /* * A ref_count = 3 is needed because the vm_struct and vmap_area * structures allocated in the __get_vm_area_node() function contain * references to the virtual address of the vmalloc'ed block. */ kmemleak_alloc(addr, real_size, 3, gfp_mask); return addr; fail: warn_alloc_failed(gfp_mask, 0, "vmalloc: allocation failure: %lu bytes\n", real_size); return NULL; }
static struct vm_struct *__get_vm_area_node(unsigned long size, unsigned long align, unsigned long flags, unsigned long start, unsigned long end, int node, gfp_t gfp_mask, const void *caller) { struct vmap_area *va; struct vm_struct *area; BUG_ON(in_interrupt()); if (flags & VM_IOREMAP) { int bit = fls(size); if (bit > IOREMAP_MAX_ORDER) bit = IOREMAP_MAX_ORDER; else if (bit < PAGE_SHIFT) bit = PAGE_SHIFT; align = 1ul << bit; }//ioremap映射時要做的一些檢查 size = PAGE_ALIGN(size);//頁對齊 if (unlikely(!size)) return NULL; //分配一個area結構體內存 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node); if (unlikely(!area)) return NULL; /* * We always allocate a guard page. */ size += PAGE_SIZE;//加上空洞頁,空洞頁是不分配物理內存的 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);//分配一個虛擬內存區域kvm if (IS_ERR(va)) { kfree(area); return NULL; } /* * When this function is called from __vmalloc_node_range, * we add VM_UNLIST flag to avoid accessing uninitialized * members of vm_struct such as pages and nr_pages fields. * They will be set later. */ if (flags & VM_UNLIST)//標識含義上面有解釋,下面的函數主要是從va中賦值給area setup_vmalloc_vm(area, va, flags, caller); else insert_vmalloc_vm(area, va, flags, caller); return area; }
下面是從
/* * Allocate a region of KVA of the specified size and alignment, within the * vstart and vend. */ static struct vmap_area *alloc_vmap_area(unsigned long size, unsigned long align, unsigned long vstart, unsigned long vend, int node, gfp_t gfp_mask) { struct vmap_area *va; struct rb_node *n; unsigned long addr; int purged = 0; struct vmap_area *first; BUG_ON(!size);//size = 0 BUG_ON(size & ~PAGE_MASK); //size要頁對齊 BUG_ON(!is_power_of_2(align));//size要以2的n次冪對齊 //分配結構體 va = kmalloc_node(sizeof(struct vmap_area), gfp_mask & GFP_RECLAIM_MASK, node); if (unlikely(!va)) return ERR_PTR(-ENOMEM); retry: spin_lock(&vmap_area_lock); /* * Invalidate cache if we have more permissive parameters. * cached_hole_size notes the largest hole noticed _below_ * the vmap_area cached in free_vmap_cache: if size fits * into that hole, we want to scan from vstart to reuse * the hole instead of allocating above free_vmap_cache. * Note that __free_vmap_area may update free_vmap_cache * without updating cached_hole_size or cached_align. *///下面判斷cache vmap是否有用,主要檢查是否存在、大小、起始地址、對齊 if (!free_vmap_cache || size < cached_hole_size || vstart < cached_vstart || align < cached_align) { nocache: cached_hole_size = 0; free_vmap_cache = NULL; } /* record if we encounter less permissive parameters */ cached_vstart = vstart; cached_align = align; /* find starting point for our search */ if (free_vmap_cache) {//把cache 中的vmap拿出來比較下 first = rb_entry(free_vmap_cache, struct vmap_area, rb_node); addr = ALIGN(first->va_end, align);//首先要對齊後再比較 if (addr < vstart)//結束地址都比開始地址小,那肯定不能用 goto nocache; if (addr + size < addr)//地址越界 goto overflow; } else {//沒有free_vmap_cache addr = ALIGN(vstart, align);//和上面一樣檢查下地址 if (addr + size < addr) goto overflow; n = vmap_area_root.rb_node; first = NULL; //下面是紅黑樹的遍歷,主要是看看比較的條件 while (n) { struct vmap_area *tmp; tmp = rb_entry(n, struct vmap_area, rb_node); if (tmp->va_end >= addr) {//找到一個結束地址大於需要映射的開始地址 first = tmp; if (tmp->va_start <= addr)//這裡就表明,起始地址在區域中間 break; n = n->rb_left;//這裡往葉子節點走,則分配地址更小的區域 } else n = n->rb_right;//這邊分配,則分配地址更大的區域 } if (!first)//表示找到了起始地址,映射起始地址比任何區域的結束地址都大 goto found; } /* from the starting point, walk areas until a suitable hole is found */ while (addr + size > first->va_start && addr + size <= vend) {//這裡是計算空洞地址是否足夠 if (addr + cached_hole_size < first->va_start) cached_hole_size = first->va_start - addr; addr = ALIGN(first->va_end, align);//重點是addr每次都會移動到區域結尾處 if (addr + size < addr) goto overflow; if (list_is_last(&first->list, &vmap_area_list))//如果是最後一個區域,那接下來的都是空洞地址 goto found; first = list_entry(first->list.next, struct vmap_area, list);//下一個地址 } found://如果要理解上面的代碼,其實分析下first的幾種情況就可以明了了; if (addr + size > vend)//看看是否超出vmalloc_end的界限 goto overflow; //下面開始賦值了 va->va_start = addr; va->va_end = addr + size; va->flags = 0; __insert_vmap_area(va);//插入紅黑樹和鏈表中 free_vmap_cache = &va->rb_node; spin_unlock(&vmap_area_lock); BUG_ON(va->va_start & (align-1)); BUG_ON(va->va_start < vstart); BUG_ON(va->va_end > vend); return va; overflow://沒有地址分配的打印 spin_unlock(&vmap_area_lock); if (!purged) { purge_vmap_area_lazy(); purged = 1; goto retry; } if (printk_ratelimit()) printk(KERN_WARNING "vmap allocation for size %lu failed: " "use vmalloc=to increase size.\n", size); kfree(va); return ERR_PTR(-EBUSY); }
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot, int node, const void *caller) { const int order = 0; struct page **pages; unsigned int nr_pages, array_size, i; gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;//分配初始化為0的內存頁 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;//去掉一個空洞頁 array_size = (nr_pages * sizeof(struct page *));//數組大小 area->nr_pages = nr_pages;//實際映射的頁數 /* Please note that the recursion is strictly bounded. */ if (array_size > PAGE_SIZE) {//如果大於一個page,則使用vmalloc來分配。這裡是遞歸 pages = __vmalloc_node(array_size, 1, nested_gfp|__GFP_HIGHMEM, PAGE_KERNEL, node, caller); area->flags |= VM_VPAGES;//標識是vmalloc分配的內存 } else {//數組比較下,就用kmalloc來分配,node = -1 pages = kmalloc_node(array_size, nested_gfp, node); } area->pages = pages; area->caller = caller;//這是__vmalloc_node_flags()函數的返回地址吧,這個不知道有什麼用?? if (!area->pages) {//分配數組空間失敗,就釋放area remove_vm_area(area->addr); kfree(area); return NULL; } for (i = 0; i < area->nr_pages; i++) { struct page *page; gfp_t tmp_mask = gfp_mask | __GFP_NOWARN; if (node < 0) page = alloc_page(tmp_mask); else page = alloc_pages_node(node, tmp_mask, order); if (unlikely(!page)) {//如果有一個頁分配失敗的話就全部失敗,釋放掉開始分配的內存; /* Successfully allocated i pages, free them in __vunmap() */ area->nr_pages = i; goto fail; } area->pages[i] = page;//記錄頁面數組 } if (map_vm_area(area, prot, &pages))//利用頁表項來建立映射 goto fail; return area->addr; fail: warn_alloc_failed(gfp_mask, order, "vmalloc: allocation failure, allocated %ld of %ld bytes\n", (area->nr_pages*PAGE_SIZE), area->size); vfree(area->addr); return NULL; }
-------------------------------釋放vmalloc分配的頁==vfree()-------------------------------------
/** * vfree - release memory allocated by vmalloc() * @addr: memory base address * * Free the virtually continuous memory area starting at @addr, as * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is * NULL, no operation is performed. * * Must not be called in NMI context (strictly speaking, only if we don't * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling * conventions for vfree() arch-depenedent would be a really bad idea) * * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node) * */ void vfree(const void *addr) { BUG_ON(in_nmi()); kmemleak_free(addr);//檢查內存洩漏函數 if (!addr)//簡單做下檢查 return; if (unlikely(in_interrupt())) { struct vfree_deferred *p = &__get_cpu_var(vfree_deferred); llist_add((struct llist_node *)addr, &p->list); schedule_work(&p->wq); } else __vunmap(addr, 1); }
釋放的主要函數,vmalloc和其他虛擬映射的地址釋放也是調用該函數:參數是:addr和1
static void __vunmap(const void *addr, int deallocate_pages) { struct vm_struct *area; if (!addr)//NULL return; if ((PAGE_SIZE-1) & (unsigned long)addr) {//對齊檢查 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr); return; } area = remove_vm_area(addr);//釋放虛擬地址 if (unlikely(!area)) { WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n", addr); return; } debug_check_no_locks_freed(addr, area->size); debug_check_no_obj_freed(addr, area->size); if (deallocate_pages) { int i; for (i = 0; i < area->nr_pages; i++) {//釋放物理內存頁 struct page *page = area->pages[i]; BUG_ON(!page); __free_page(page); } if (area->flags & VM_VPAGES)//如果pages是vmalloc分配的(數組大小大於一個page時)則用vfree釋放 vfree(area->pages); else kfree(area->pages); } kfree(area); return; }