《[ arm驅動] linux異步通知與 異步IO》涉及內核驅動函數二個,內核結構體一個,分析了內核驅動函數二個;可參考的相關應用程序模板或內核驅動模板二個,可參考的相關應用程序模板或內核驅動三個
描述:設備文件IO訪問:阻塞與非阻塞io訪問,poll函數提供較好的解決設備訪問的機制,但是如果有了異步通知整套機制就更加完整了
一、阻塞 I/O,非阻塞IO,異步I/O
1、阻塞 I/O :掛起進程一直等待設備可訪問後再訪問
2、非阻塞IO:進程進行對設備訪問一次,不可訪問時,繼續執行下一條指令
3、異步I/O:非常類似於硬件上“中斷”的概念(硬件去call軟件,內核去call應用程序);信號是在軟件層次上對中斷機制的一種模擬;
a)原理:信號是異步的,一個進程不必通過任何操作來等待信號的到達;事實上:進程也不知道信號到底什麼時候到達;“一個進程收到一個異步通知信號"與"處理器收到一個中斷請求"原理是一樣的;
4、異步I/O通知隊列(async_queue):內核通過“內核異步通知的程序 fasync()函數”將設備文件fd描述符加入異步通知隊列(內核異步通知的鏈表)。當fd有I/O操作發生時內核通過kill_fasync()釋放(產生) SIGIO 信號,從而達到主動通知注冊過SIG_IO信號的應用程序。
5、異步通知對象:首先它是設備文件,其次要注冊過fasync()函的文件;異步通知對象不是不是普通文件(不是隨便的/tmp/text.txt),因為普通文件沒有在內核中實現fasync()函數和kill_fasync()
二、異步通訊應用程序部分
模板一)設備文件的異步通知應用程序
voidinput_handler(intnum){//信號處理函數
}
//打開目標設備
fd = open("設備文件路徑如/dev/xxx", O_RDWR);
//設置好目標設備的SIGIO信號處理程序;等待內核kill_fasync()釋放 SIGIO 信號
signal(SIGIO,input_handler);
//使當前進程變成文件的主人,這樣才能使文件中的信號發到當前進程
fcntl(fd, F_SETOWN, getpid());
//獲得當前fd的flag值
oflags = fcntl(fd, F_GETFL);
/*設置設備文件描述符號fd的FASYNC異步通知標志,
即給fd添加異步通知模式,fasync()函數將fd加入異步IO通知隊列*/
fcntl(fd, F_SETFL, oflags | FASYNC);
圖示一、異步通知工作過程圖
實例一)以標准輸入輸出設備異步通知
#include <signal.h>
#include <unistd.h>
#include <stdio.h>
#include <fcntl.h>
#include <signal.h>
#define MAX_LEN 100
voidinput_handler(intnum)
{
chardata[MAX_LEN];
intlen;
len = read(STDIN_FILENO, &data, MAX_LEN);
data[len] = 0;
printf("input available :%s\n", data);
}
voidsetFdAsync(intfd){
intoflags;
//當前進程變成文件的主人
fcntl(fd, F_SETOWN, getpid());
//本程序中fd = STDIN_FILENO標准輸入設備設備文件描述符號;普通文件內核中沒有實現FASYNC,不能使用異步通知
oflags = fcntl(fd, F_GETFL);//
//FASYNC在glibc 的fcntl.h文件中可以看到這樣的定義 #define FASYNC O_ASYNC
fcntl(fd, F_SETFL, oflags | FASYNC);
}
voidmain(){
intfd = STDIN_FILENO;//STDIN_FILENO輸入輸出設備描述符號,一般是鍵盤
signal(SIGIO,input_handler);//設置好目標設備的SIGIO信號處理程序;等待內核kill_fasync()釋放 SIGIO 信號
setFdAsync(fd);
while(1);
}
運行結果:
efgwrfgregr
input available :efgwrfgregr
sfsdf
input available :sfsdf
//本程序電腦上運行時,由於系統對STDIN_FILENO有特殊保護,while裡面的程序運行了兩次,進程就被系統掛機休眠,此時cpu消耗為0;
//但我在arm開發板上的linux2.6內核運行時,while正常,進程不被掛起,估計是沒鍵盤的原因...,也待解
三、驅動程序部分
驅動程序:一項數據結構和兩個函數
結構體一)一項數據結構----- fasync_struct結構體
內核源碼一)fasync_struct結構體內核源碼
struct fasync_struct {
int magic;//啟用設備文件鏡像,監聽文件是否變化(這個說法我猜的)
int fa_fd;//文件描述符
struct fasync_struct *fa_next; /* 異步通知單鏈表 */
//filp是進程通過PCB中的文件描述符表找到該fd所指向的文件指針;在fopen流操作中使用file結構體指針它的優點是帶有I/O緩存
struct file *fa_file;
//struct file表示該進程打開的文件,其中有一個owner屬性,用來表示打開設備文件的進程
};
兩個函數
內核部分函數一)fasync_helper處理設備文件異步通知的標志(O_ASYNC或FASYNC),將fd加入異步通知隊列函數
fasync_helper(int fd, struct file * filp, int on, struct fasync_struct * * fapp);
內核源碼二)fasync_helper內核源碼分析
//第一次因為on = MODE = oflag | FASYNC,on!=0所以執行if (on)對struct fasync_struct **fapp進行初始化,
//當程序釋放設備使用myfasync_drv_fasync(-1, file, 0),就執行goto out釋放中斷
int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
{
struct fasync_struct *fa, **fp;
struct fasync_struct *new = NULL;
int result = 0;
if (on) {//第一次分配fapp空間
new = kmem_cache_alloc(fasync_cache, GFP_KERNEL);
if (!new)
return -ENOMEM;
}
write_lock_irq(&fasync_lock);
for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {//第一次初始化fapp
if (fa->fa_file == filp) {
if(on) {
fa->fa_fd = fd;
kmem_cache_free(fasync_cache, new);
} else {
*fp = fa->fa_next;
kmem_cache_free(fasync_cache, fa);
result = 1;
}
goto out;
}
}
if (on) {
new->magic = FASYNC_MAGIC;
new->fa_file = filp;
new->fa_fd = fd;
new->fa_next = *fapp;
*fapp = new;
result = 1;
}
out:
write_unlock_irq(&fasync_lock);
return result;
}
EXPORT_SYMBOL(fasync_helper);
釋放信號函數
內核部分函數二)kill_fasync(struct fasync_struct * * fp, int sig, int band)
參數:sig就是我們要發送的信號;band(帶寬),一般都是使用POLL_IN,表示設備可讀,如果設備可寫,使用POLL_OUT
內核源碼三)釋放(產生)異步讀信號函數
void __kill_fasync(struct fasync_struct *fa, int sig, int band)
{
while (fa) {
struct fown_struct * fown;
//如果設備文件鏡像不存在如設備文件不存在(被刪除或改名)或取消了注冊FASYNC;鏡像映射失敗跳出kill_fasync,不產生信號
if (fa->magic != FASYNC_MAGIC) {
printk(KERN_ERR "kill_fasync: bad magic number in "
"fasync_struct!\n");
return;
}
fown = &fa->fa_file->f_owner;
/* Don't send SIGURG to processes which have not set a
queued signum: SIGURG has its own default signalling
mechanism. */
if (!(sig == SIGURG && fown->signum == 0))
send_sigio(fown, fa->fa_fd, band);
fa = fa->fa_next;
}
}
EXPORT_SYMBOL(__kill_fasync);
模板二)信號的異步通知機制模板
struct VirtualDisk{
struct cdev cdev;
//...其他全局變量....
struct fasync_struct *async_queue;//異步結構體指針
};
/*異步讀信號*/
static int myfasync_drv_fasync(int fd, struct file *file, int mode){
struct VirtualDisk *devp = file->private_data; /*獲得設備結構體指針*/
//....................
return fasync_helper(fd, file, mode, &devp->async_queue);
}
static ssize_t myfasync_drv_write(struct file *file, const char __user *buf, size_t count, loff_t * ppos){
struct VirtualDisk *devp = file->private_data; /*獲得設備結構體指針*/
//...............
//產生異步讀信號SIGIO
if(devp->async_queue)kill_fasync(&devp->async_queue, SIGIO, POLL_IN);
return 0;
}
static int myfasync_drv_release(struct inode *inode, struct file *file)
{
/*當設備關閉時,需要將fasync_struct從異步隊列中刪除/*
myfasync_drv_fasync(-1, file, 0);
return 0;
}
實例二)驅動程序完整實例:
//“myfasync_drv”,"myfasync_","myfasync_drv"
#include <linux/module.h>//模塊所需的大量符號和函數定義
#include <linux/kernel.h>
#include <linux/fs.h>//文件系統相關的函數和頭文件
#include <linux/init.h> //指定初始化和清除函數
#include <linux/delay.h>
#include <linux/cdev.h> //cdev結構的頭文件包含<linux/kdev_t.h>
#include <linux/device.h>
#include <linux/mm.h>
//#include <linux/sched.h>//包含驅動程序使用的大部分內核API的定義,包括睡眠函數以及各種變量聲明
#include <asm/uaccess.h>//在內核和用戶空間中移動數據的函數
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/arch/regs-gpio.h>
#include <asm/hardware.h>
#define VIRTUALDISK_SIZE 0x1000//4k
#define MEM_CLEAR 0x1
#define VIRTUALDISK_MAJOR 250
int VirtualDisk_major = VIRTUALDISK_MAJOR;
struct fasync_struct *async_queue;//異步結構體指針
struct VirtualDisk{
struct cdev cdev;//詳細看cdev機制
unsigned char mem[VIRTUALDISK_SIZE ];
long count; /*記錄設備目前被多少設備打開*/
};
static struct class *myfasync_class;
static struct class_device *myfasync_class_dev;
struct VirtualDisk *VirtualDiskp;
static int myfasync_drv_fasync(int fd, struct file *file, int mode){
printk("myfasync_drv_fasync %d\n", fd);
return fasync_helper(fd, file, mode, &async_queue);
}
static int myfasync_drv_open(struct inode *inode, struct file *file)
{
printk("myfasync_drv open\n");
file->private_data = VirtualDiskp;
VirtualDiskp->count++; /*增加設備打開次數*/
return 0;
}
static int myfasync_drv_release(struct inode *inode, struct file *file)
{
printk("myfasync_drv release\n");
VirtualDiskp->count--; /*減少設備打開次數*/
myfasync_drv_fasync(-1, file, 0);//當設備關閉時,需要將fasync_struct從異步隊列中刪除
return 0;
}
/*seek文件定位函數:seek()函數對文件定位的起始地址可以是文件開頭(SEEK_SET,0)、當前位置(SEEK_CUR,1)、文件尾(SEEK_END,2)*/
static loff_t myfasync_drv_llseek(struct file *file, loff_t offset, int origin){
loff_t ret = 0;/*返回的位置偏移*/
switch (origin)
{
case SEEK_SET: /*相對文件開始位置偏移*/
if (offset < 0)/*offset不合法*/
{
ret = - EINVAL; /*無效的指針*/
break;
}
if ((unsigned int)offset > VIRTUALDISK_SIZE)/*偏移大於設備內存*/
{
ret = - EINVAL; /*無效的指針*/
break;
}
file->f_pos = (unsigned int)offset; /*更新文件指針位置*/
ret = file->f_pos;/*返回的位置偏移*/
break;
case SEEK_CUR: /*相對文件當前位置偏移*/
if ((file->f_pos + offset) > VIRTUALDISK_SIZE)/*偏移大於設備內存*/
{
ret = - EINVAL;/*無效的指針*/
break;
}
if ((file->f_pos + offset) < 0)/*指針不合法*/
{
ret = - EINVAL;/*無效的指針*/
break;
}
file->f_pos += offset;/*更新文件指針位置*/
ret = file->f_pos;/*返回的位置偏移*/
break;
default:
ret = - EINVAL;/*無效的指針*/
break;
}
return ret;
}
/*設備控制函數:ioctl()函數接受的MEM_CLEAR命令,這個命令將全局內存的有效數據長度清零,對於設備不支持的命令,ioctl()函數應該返回-EINVAL*/
static int myfasync_drv_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg){
struct VirtualDisk *devp = file->private_data;/*獲得設備結構體指針*/
switch (cmd)
{
case MEM_CLEAR:/*設備內存清零*/
memset(devp->mem, 0, VIRTUALDISK_SIZE);
printk(KERN_INFO "VirtualDisk is set to zero\n");
break;
default:
return - EINVAL;
}
return 0;
}
/*讀函數:讀寫函數主要是讓設備結構體的mem[]數組與用戶空間交互數據,並隨著訪問字節數變更返回用戶的文件讀寫偏移位置*/
static ssize_t myfasync_drv_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
unsigned long p = *ppos; /*記錄文件指針偏移位置*/
unsigned int countt = count;/*記錄需要讀取的字節數*/
int ret = 0; /*返回值*/
struct VirtualDisk *devp = file->private_data; /*獲得設備結構體指針*/
printk("myfasync_drv read\n");
/*分析和獲取有效的讀長度*/
if (p >= VIRTUALDISK_SIZE ) /*要讀取的偏移大於設備的內存空間*/
return 0;/*讀取地址錯誤*/
if (countt > VIRTUALDISK_SIZE - p)/*要讀取的字節大於設備的內存空間*/
countt = VIRTUALDISK_SIZE - p;/*將要讀取的字節數設為剩余的字節數*/
/*內核空間->用戶空間交換數據*/
if (copy_to_user(buf, (void*)(devp->mem + p), countt))
{
ret = - EFAULT;
}
else
{
*ppos += countt;
ret = countt;
printk("read %d bytes(s) is %ld\n", countt, p);
}
printk("bytes(s) is %s\n", devp->mem);
return ret;
}
/*
file 是文件指針,count 是請求的傳輸數據長度,buff 參數是指向用戶空間的緩沖區,這個緩沖區或者保存要寫入的數據,或者是一個存放新讀入數據的空緩沖區,該地址在內核空間不能直接讀寫,ppos 是一個指針指向一個"long offset type"對象, 它指出用戶正在存取的文件位置. 返回值是一個"signed size type。寫的位置相對於文件開頭的偏移。
*/
static ssize_t myfasync_drv_write(struct file *file, const char __user *buf, size_t count, loff_t * ppos)
{
unsigned long p = *ppos; /*記錄文件指針偏移位置*/
int ret = 0; /*返回值*/
unsigned int countt = count;/*記錄需要寫入的字節數*/
struct VirtualDisk *devp = file->private_data; /*獲得設備結構體指針*/
printk("myfasync_drv write\n");
/*分析和獲取有效的寫長度*/
if (p >= VIRTUALDISK_SIZE )/*要寫入的偏移大於設備的內存空間*/
return 0;/*寫入地址錯誤*/
if (countt > VIRTUALDISK_SIZE - p)/*要寫入的字節大於設備的內存空間*/
countt = VIRTUALDISK_SIZE - p;/*將要寫入的字節數設為剩余的字節數*/
/*用戶空間->內核空間*/
if (copy_from_user(devp->mem + p, buf, countt))
ret = - EFAULT;
else
{
*ppos += countt;/*增加偏移位置*/
ret = countt;/*返回實際的寫入字節數*/
printk("written %u bytes(s) from%lu, buffer is %s\n", countt, p, devp->mem);
}
if(async_queue){
kill_fasync(&async_queue, SIGIO, POLL_IN);
printk("write kill_fasync\n");
}
return ret;
}
static struct file_operations myfasync_drv_fops = {
.owner = THIS_MODULE, /* 這是一個宏,推向編譯模塊時自動創建的__this_module變量 */
.open = myfasync_drv_open,
.read = myfasync_drv_read,
.write = myfasync_drv_write,
.release = myfasync_drv_release,
.llseek = myfasync_drv_llseek,
.ioctl = myfasync_drv_ioctl,
.fasync = myfasync_drv_fasync,
};
/*將 cdev 結構嵌入一個你自己的設備特定的結構,你應當初始化你已經分配的結構使用以上函數,有一個其他的 struct cdev 成員你需要初始化. 象 file_operations 結構,struct cdev 有一個擁有者成員,應當設置為 THIS_MODULE,一旦 cdev 結構建立, 最後的步驟是把它告訴內核, 調用:
cdev_add(&dev->cdev, devno, 1);*/
static void VirtualDisk_setup_cdev(struct VirtualDisk *dev, int minorIndex){
int err;
int devno = MKDEV(VirtualDisk_major, minorIndex);
cdev_init(&dev->cdev, &myfasync_drv_fops);
dev->cdev.owner = THIS_MODULE;
err = cdev_add(&dev->cdev, devno, 1);
if(err){
printk("error %d cdev file added\n", err);
}
}
static int myfasync_drv_init(void)
{
int result;
dev_t devno = MKDEV(VirtualDisk_major, 0);
if(VirtualDisk_major){
result = register_chrdev_region(devno,
1, "myfasync_drv");
}else{
result = alloc_chrdev_region(&devno, 0, 1, "myfasync_drv");
VirtualDisk_major = MAJOR(devno);
}
if(result < 0 ){
return result;
}
VirtualDiskp = kmalloc(sizeof(struct VirtualDisk), GFP_KERNEL);
if(!VirtualDiskp){
result = -ENOMEM;
goto fail_malloc;
}
memset(VirtualDiskp, 0, sizeof(struct VirtualDisk));
VirtualDisk_setup_cdev(VirtualDiskp, 0);
myfasync_class = class_create(THIS_MODULE, "myfasync_drv");
if (IS_ERR(myfasync_class))
return PTR_ERR(myfasync_class);
myfasync_class_dev = class_device_create(myfasync_class, NULL, MKDEV(VirtualDisk_major, 0), NULL, "myfasync_drv"); /* /dev/xyz */
if (IS_ERR(myfasync_class_dev))
return PTR_ERR(myfasync_class_dev);
return 0;
fail_malloc:
unregister_chrdev_region(devno, 1);
return result;
}
static void myfasync_drv_exit(void)
{
cdev_del(&VirtualDiskp->cdev);
kfree(VirtualDiskp);
unregister_chrdev_region(MKDEV(VirtualDisk_major, 0), 1);
class_device_unregister(myfasync_class_dev);
class_destroy(myfasync_class);
}
module_init(myfasync_drv_init);
module_exit(myfasync_drv_exit);
MODULE_LICENSE("GPL");
Makefile
#myfasync_drv.c
KERN_DIR = /workspacearm/linux-2.6.2.6
all:
make -C $(KERN_DIR) M=`pwd` modules
cp myfasync_drv.ko /opt/fsmini/
clean:
make -C $(KERN_DIR) M=`pwd` modules clean
rm -rf timerlists.order
obj-m += myfasync_drv.o
實例三)驅動程序對應的測試的應用程序部分
#include <signal.h>
#include <unistd.h>
#include <stdio.h>
#include <fcntl.h>
#include <signal.h>
int myfd;
int lenthe;
void input_handler(int num)
{
char data[80];
int len;
lseek(myfd, -lenthe, SEEK_CUR);//移動偏移量到寫之前位置
len = read(myfd, data, lenthe);
//data[len] = '';
printf("myfd = %d, len = %d buffuer input available :%s\n",myfd, len, data);
}
void setFdAsync(int fd){
int oflags;
//當前進程變成文件的主人
fcntl(fd, F_SETOWN, getpid());
//本程序中fd = STDIN_FILENO標准輸入設備設備文件描述符號;普通文件內核中沒有實現FASYNC,不能使用異步通信
oflags = fcntl(fd, F_GETFL);//
//FASYNC在glibc 的fcntl.h文件中可以看到這樣的定義 #define FASYNC O_ASYNC
fcntl(fd, F_SETFL, oflags | FASYNC);
}
int main(){
myfd = open("/dev/myfasync_drv", O_RDWR);//STDIN_FILENO輸入輸出設備描述符號,一般是鍵盤
printf("fd = %d,pid = %d", myfd, getpid());
signal(SIGIO,input_handler);//設置好目標設備的SIGIO信號處理程序;等待內核kill_fasync()釋放 SIGIO 信號
setFdAsync(myfd);
printf("before while\n");
while(1){
char buffer[80];
lenthe = read(STDIN_FILENO, buffer, 80);
write(myfd, buffer, lenthe);
}
return 0;
}
我的Makefile
objs := $(patsubst %c, %o, $(shell ls *.c))
myarmgcc := /workspacearm/armlinuxgcc2626/bin/arm-linux-gcc
mybutton.bin:$(objs)
$(myarmgcc) -o $@ $^
cp *.bin /opt/fsmini/
%.o:%.c
$(myarmgcc) -c -o $@ $<
clean:
rm -f *.bin *.o
實驗結果
# insmod myfasync_drv.ko
# ./mybutton.bin
myfasync_drv open//對應應用程序myfd = open("/dev/myfasync_drv",調用了內核驅動open函數
myfasync_drv_fasync 3//對應應用程序fcntl(fd, F_SETFL, oflags | FASYNC);調用了內核驅動的myfasync_drv_fasync()函數
//
fd = 3,pid = 793before while//while前的進程信息輸出
hello//鍵盤輸入hello
myfasync_drv write//調用驅動程序write函數
written 6 bytes(s) from0, buffer is hello//驅動程序write函數內部輸出
write kill_fasync//內涵write函數中,執行kill_fasync(&async_queue, SIGIO, POLL_IN);釋放SIGIO信號
myfasync_drv read//此時應用程序收到中斷,應用程序執行read函數,read對應內核驅動的read
read 6 bytes(s) is 0//內核驅動read打印輸出
bytes(s) is hello //內核驅動read打印輸出
myfd = 3, len = 6 buffuer input available :hello//應用程序input_handler函數輸出驅動的寫入值
//下面是while第二次執行
it is ok
myfasync_drv write
written 9 bytes(s) from6, buffer is hello
it is ok
write kill_fasync
myfasync_drv read
read 9 bytes(s) is 6
bytes(s) is hello
it is ok
myfd = 3, len = 9 buffuer input available :it is ok
//按ctrl+c退出程序,會執行myfasync_drv_release中myfasync_drv_fasync(-1, file, 0),釋放本進程的異步通知
myfasync_drv release
myfasync_drv_fasync -1
#
四、異步IO缺陷:當有多個文件發送異步通知信號給一個進程時,進程無法知道是哪個文件發送的信號,這時候“設備文件 ”還是要借助poll機制完成IO;(應用程序中使用select)