設備總線驅動模型:http://blog.csdn.net/lizuobin2/article/details/51570196
本文主要參考:http://www.wowotech.net/device_model/platform_device.html
platform平台設備驅動是基於設備總線驅動模型的,它只不過是將 device 進一步封裝成為 platform_device,將 device_driver 進一步封裝成為 platform_device_driver,前面已經分析過設備總線驅動模型,關於device 與 device_driver 的注冊過程以及它們在sysfs文件系統中的層次關系就不在分析,本文重點分析platform平台設備驅動與設備總線驅動模型相比較新增添的那些東西。
在Linux設備模型的抽象中,存在著一類稱作“Platform Device”的設備,內核是這樣描述它們的(Documentation/driver-model/platform.txt):
Platform devices are devices that typically appear as autonomous entities in the system. This includes legacy port-based devices and host bridges to peripheral buses, and most controllers integrated into system-on-chip platforms. What they usually have
in common is direct addressing from a CPU bus. Rarely, a platform_device will be connected through a segment of some other kind of bus; but its registers will still be directly addressable.
概括來說,Platform設備包括:基於端口的設備(已不推薦使用,保留下來只為兼容舊設備,legacy);連接物理總線的橋設備;集成在SOC平台上面的控制器;連接在其它bus上的設備(很少見)。等等。
這些設備有一個基本的特征:可以通過CPU bus直接尋址(例如在嵌入式系統常見的“寄存器”)。因此,由於這個共性,內核在設備模型的基礎上(device和device_driver),對這些設備進行了更進一步的封裝,抽象出paltform bus、platform device和platform driver,以便驅動開發人員可以方便的開發這類設備的驅動。可以說,paltform設備對Linux驅動工程師是非常重要的,因為我們編寫的大多數設備驅動,都是為了驅動plaftom設備。
platform_bus_type我們知道,在設備總線驅動模型的中,BUS像一個月老一樣,通過它的match函數,將注冊到bus中的device與driver進行配對,那麼每一個不同的bus 都有自己的match函數,我們來看看platform_bus_type.
struct bus_type platform_bus_type = { .name = "platform", .dev_attrs = platform_dev_attrs, .match = platform_match, .uevent = platform_uevent, .pm = &platform_dev_pm_ops, };
static int platform_match(struct device *dev, struct device_driver *drv) { struct platform_device *pdev = to_platform_device(dev); struct platform_driver *pdrv = to_platform_driver(drv); /* match against the id table first */ if (pdrv->id_table) return platform_match_id(pdrv->id_table, pdev) != NULL; /* fall-back to driver name match */ return (strcmp(pdev->name, drv->name) == 0); }如果platform_device_driver中定義了id_table,則調用 platform_match_id 進行匹配
舉個例子:
static struct platform_device_id s3c24xx_driver_ids[] = { { .name = "s3c2410-i2c", .driver_data = TYPE_S3C2410, }, { .name = "s3c2440-i2c", .driver_data = TYPE_S3C2440, }, { }, };
struct platform_device s3c_device_i2c0 = { .name = "s3c2410-i2c", #ifdef CONFIG_S3C_DEV_I2C1 .id = 0, #else .id = -1, #endif .num_resources = ARRAY_SIZE(s3c_i2c_resource), .resource = s3c_i2c_resource, };
static const struct platform_device_id *platform_match_id(struct platform_device_id *id, struct platform_device *pdev) { while (id->name[0]) { if (strcmp(pdev->name, id->name) == 0) { pdev->id_entry = id; return id; } id++; } return NULL; }顯然,platform_match_id 的作用就是遍歷整個 Id_table 數組,尋找是否有與 platform_device->name 同名的,如果有,則返回這個 Platform_device_id ,使用Id_table 打破了原本設備總線驅動模型,一個 device 只能用與一個 device_driver 配對的局限性。現在一個platform_device_driver可以與多個platform_device配對。
如果沒有,則只是根據 platform_device_driver->name 與 platform_device->name 進行比較,這也就是老師為啥在寫平台設備驅動程序的時候經常說,“將驅動注冊到內核中去,如果有同名設備,則調用driver->probe函數....”。從device封裝而來的platform_device
struct platform_device { const char * name; int id; struct device dev; u32 num_resources; struct resource * resource; struct platform_device_id *id_entry; /* arch specific additions */ struct pdev_archdata archdata; };name,設備的名稱,該名稱在設備注冊時,會拷貝到dev.init_name中。dev,真正的設備,通過 container_of ,就能找到整個platform_device ,訪問其它成員,如後面要提到的 resource
num_resources、resource,該設備的資源描述,由struct resource(include/linux/ioport.h)結構抽象。
在Linux中,系統資源包括I/O、Memory、Register、IRQ、DMA、Bus等多種類型。這些資源大多具有獨占性,不允許多個設備同時使用,因此Linux內核提供了一些API,用於分配、管理這些資源。 當某個設備需要使用某些資源時,只需利用struct resource組織這些資源(如名稱、類型、起始、結束地址等),並保存在該設備的resource指針中即可。然後在設備probe時,設備需求會調用資源管理接口,分配、使用這些資源。而內核的資源管理邏輯,可以判斷這些資源是否已被使用、是否可被使用等等。
struct resource { resource_size_t start; resource_size_t end; const char *name; unsigned long flags; struct resource *parent, *sibling, *child; };
static struct resource led_resource[] = { //jz2440的參數,驅動未測試 [0] = { .start = 0x56000010, .end = 0x56000010 + 8 - 1, .flags = IORESOURCE_MEM, }, [1] = { .start = 5, .end = 5, .flags = IORESOURCE_IRQ, }, }; static struct platform_device led_dev = { .name = "myled", //設備名字 與 驅動相匹配 .id = -1, .num_resources = ARRAY_SIZE(led_resource), .resource = led_resource, .dev = { .release = led_release, //.devt = MKDEV(252, 1), }, };從 device_driver 封裝而來的platform_device_dirver
struct platform_driver { int (*probe)(struct platform_device *); int (*remove)(struct platform_device *); void (*shutdown)(struct platform_device *); int (*suspend)(struct platform_device *, pm_message_t state); int (*resume)(struct platform_device *); struct device_driver driver; struct platform_device_id *id_table; };
int platform_driver_register(struct platform_driver *drv) { drv->driver.bus = &platform_bus_type; if (drv->probe) drv->driver.probe = platform_drv_probe; if (drv->remove) drv->driver.remove = platform_drv_remove; if (drv->shutdown) drv->driver.shutdown = platform_drv_shutdown; return driver_register(&drv->driver); }struct platform_driver結構和struct device_driver非常類似,上邊的platform_drv_probe、platform_drv_remove、platform_drv_shutdown,只不過稍作轉換調用platform_driver中的probe、remove、shutdown函數,舉個例子稍微看一下
static int platform_drv_probe(struct device *_dev) { struct platform_driver *drv = to_platform_driver(_dev->driver); struct platform_device *dev = to_platform_device(_dev); return drv->probe(dev); }
Platform Device提供的API
/* include/linux/platform_device.h */ extern int platform_device_register(struct platform_device *); extern void platform_device_unregister(struct platform_device *); extern void arch_setup_pdev_archdata(struct platform_device *); extern struct resource *platform_get_resource(struct platform_device *, unsigned int, unsigned int); extern int platform_get_irq(struct platform_device *, unsigned int); extern struct resource *platform_get_resource_byname(struct platform_device *, unsigned int, const char *); extern int platform_get_irq_byname(struct platform_device *, const char *); extern int platform_add_devices(struct platform_device **, int); extern struct platform_device *platform_device_register_full(const struct platform_device_info *pdevinfo); static inline struct platform_device *platform_device_register_resndata( struct device *parent, const char *name, int id, const struct resource *res, unsigned int num, const void *data, size_t size) static inline struct platform_device *platform_device_register_simple( const char *name, int id, const struct resource *res, unsigned int num) static inline struct platform_device *platform_device_register_data( struct device *parent, const char *name, int id, const void *data, size_t size) extern struct platform_device *platform_device_alloc(const char *name, int id); extern int platform_device_add_resources(struct platform_device *pdev, const struct resource *res, unsigned int num); extern int platform_device_add_data(struct platform_device *pdev, const void *data, size_t size); extern int platform_device_add(struct platform_device *pdev); extern void platform_device_del(struct platform_device *pdev); extern void platform_device_put(struct platform_device *pdev);platform_device_register、platform_device_unregister,Platform設備的注冊/注銷接口,和底層的device_register等接口類似。arch_setup_pdev_archdata,設置platform_device變量中的archdata指針。
platform_get_resource、platform_get_irq、platform_get_resource_byname、platform_get_irq_byname,通過這些接口,可以獲取platform_device變量中的resource信息,以及直接獲取IRQ的number等等。
platform_device_register_full、platform_device_register_resndata、platform_device_register_simple、platform_device_register_data,其它形式的設備注冊。調用者只需要提供一些必要的信息,如name、ID、resource等,Platform模塊就會自動分配一個struct platform_device變量,填充內容後,注冊到內核中。
platform_device_alloc,以name和id為參數,動態分配一個struct platform_device變量。
platform_device_add_resources,向platform device中增加資源描述。
platform_device_add_data,向platform device中添加自定義的數據(保存在pdev->dev.platform_data指針中)。
platform_device_add、platform_device_del、platform_device_put,其它操作接口。
Platform Driver提供的APIplatform_driver_registe、platform_driver_unregister,platform driver的注冊、注銷接口。
platform_driver_probe,主動執行probe動作。
platform_set_drvdata、platform_get_drvdata,設置或者獲取driver保存在device變量中的私有數據。
懶人API
extern struct platform_device *platform_create_bundle( struct platform_driver *driver, int (*probe)(struct platform_device *), struct resource *res, unsigned int n_res, const void *data, size_t size);只要提供一個platform_driver(要把driver的probe接口顯式的傳入),並告知該設備占用的資源信息,platform模塊就會幫忙分配資源,並執行probe操作。對於那些不需要熱拔插的設備來說,這種方式是最省事的了。
簡單一例:
開發板:Mini2440
內核版本:2.6.32.2
#include <linux/module.h> #include <linux/kernel.h> #include <linux/fs.h> #include <linux/init.h> #include <linux/device.h> #include <linux/interrupt.h> #include <linux/sched.h> #include <linux/irq.h> #include <asm/uaccess.h> #include <linux/input.h> #include <linux/platform_device.h> // 設備資源 static struct resource led_resource[] = { //jz2440的參數,驅動未測試 [0] = { .start = 0x56000010, .end = 0x56000010 + 8 - 1, .flags = IORESOURCE_MEM, }, [1] = { .start = 5, .end = 5, .flags = IORESOURCE_IRQ, }, }; static void led_release(struct device *dev){ } // 創建一個設備 static struct platform_device led_dev = { .name = "myled", //設備名字 與 驅動相匹配 .id = -1, .num_resources = ARRAY_SIZE(led_resource), .resource = led_resource, .dev = { .release = led_release, //.devt = MKDEV(252, 1), }, }; static int led_dev_init(void){ //向bus注冊led_dev match drv鏈表進行配對 platform_device_register(&led_dev); return 0; } static void led_dev_exit(void){ platform_device_unregister(&led_dev); } module_init(led_dev_init); module_exit(led_dev_exit); MODULE_LICENSE("GPL");
#include <linux/module.h> #include <linux/kernel.h> #include <linux/fs.h> #include <linux/init.h> #include <linux/device.h> #include <linux/interrupt.h> #include <linux/sched.h> #include <linux/irq.h> #include <asm/uaccess.h> #include <linux/platform_device.h> #include <linux/io.h> static int major; static struct class *cls; static struct device *dev; static volatile unsigned long *gpio_con; static volatile unsigned long *gpio_dat; static int pin; static int led_open(struct inode *inode, struct file *file){ *gpio_con &= ~(0x03 << (pin*2)); *gpio_con |= (0x01 << (pin*2)); return 0; } static ssize_t led_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos){ int val; copy_from_user(&val, buf, count); if(val == 1){ *gpio_dat &= ~(1<<pin); }else{ *gpio_dat &= (1<<pin); } return 0; } static struct file_operations led_fops = { .owner = THIS_MODULE, .open = led_open, .write = led_write, }; static int led_probe(struct platform_device *pdev){ struct resource *res; // 最後一個參數 0 表示第1個該類型的資源 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); gpio_con = ioremap(res->start, res->end - res->start + 1); gpio_dat = gpio_con + 1; res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); pin = res->start; printk("led_probe, found led\n"); // 注冊設備驅動 創建設備節點 major = register_chrdev(0, "myled", &led_fops); // 創建類 cls = class_create(THIS_MODULE, "myled"); // 創建設備節點 dev = device_create(cls, NULL, MKDEV(major, 0), NULL, "led"); return 0; } static int led_remove(struct platform_device *pdev){ printk("led_remove, remove led\n"); // 刪除設備節點 device_unregister(dev); // 銷毀類 class_destroy(cls); // 取消注冊設備驅動 unregister_chrdev(major, "myled"); // 取消內存映射 iounmap(gpio_con); return 0; } struct platform_driver led_drv = { .probe = led_probe, //匹配到dev之後調用probe .remove = led_remove, .driver = { .name = "myled", }, }; static int led_drv_init(void){ platform_driver_register(&led_drv); return 0; } static void led_drv_exit(void){ platform_driver_unregister(&led_drv); } module_init(led_drv_init); module_exit(led_drv_exit); MODULE_LICENSE("GPL");