歡迎來到Linux教程網
Linux教程網
Linux教程網
Linux教程網
您现在的位置: Linux教程網 >> UnixLinux >  >> Linux基礎 >> Linux技術

Ubuntu16.04系統下CUDA7.5配置Caffe教程

Ubuntu16.04系統下CUDA7.5配置Caffe教程

由於最近安裝了Ubuntu16.04,苦於之前配置Caffe的教程都在版本14.04左右,無奈只能自己摸索,最終配置成功。本文教程的特點是不需要降級gcc的版本,畢竟cuda7.5不支持gcc5以上(默認不支持,實際支持),避免出現一系列亂七八糟的問題,反正之前我是碰到了。
本文是在參考caffe官網教程以及http://www.linuxidc.com/Linux/2015-07/120449.htm結合自己總結經驗而來,對此表示感謝。
1. 所需文件下載
1.1 Ubuntu16.04在官網下載,然後在windows下用UltraISO制作,相關文章搜索有一大片,此處不再贅述。
1.2 cuda7.5下載,下載的版本是ubuntu15.04的run文件,個人感覺比較方便。
1.3 cudnn4.0下載,進去之後如果有注冊過nvidia的賬戶直接點擊download,否則需要注冊一個賬戶,注冊完之後有一個調查,隨便選幾個鉤就可以,然後下一步是接受條款開始就可以下載了。
1.4 caffe下載就在官方的github下載就可以了
2. 顯卡驅動安裝
2.1 第一種方法是直接在ubuntu系統設置,軟件和更新裡面,選擇中國的服務器源刷新之後,點擊附加驅動選項,在Nvidia Corporation選擇361.42(強迫症必須安裝最新的),然後點擊應用更改,下載安裝完之後重啟。
2.2 第二種方法是去官方下載好驅動的run文件,選擇對應顯卡型號下載。然後關機把顯示器插到集成顯卡接口上,或者終端下
sudo gedit /etc/modprobe.d/blacklist.conf

輸入密碼後在最後一行編輯上
blacklist nouveau

Ctrl +C保存後終端輸入
sudo update-initramfs -u

重啟之後在界面按Ctrl+Alt+F2,輸入root以及密碼,然後
service lightdm stop

sh 你自己的驅動文件的完整路徑,默認選項就可以安裝了,安裝後重啟
3. Cuda7.5安裝
3.1 以文件名為cuda.run為例,終端下輸入
sh cuda.run --override
啟動安裝程序,此處有大量的條款,一路空格到最後 輸入accept,依次輸入y回車,然後n(不安裝顯卡驅動),然後一路y回車,有一個地方需要輸入密碼,還有兩個地方確認安裝路徑,直接回車即可,完成安裝,默認安裝路徑是/usr/local
將下載下來的cudnn-7.0-linux-x64-v4.0-prod.tgz 解壓之後,解壓後的cuda文件夾先打開裡面的include文件夾,空白右鍵在終端打開輸入:
sudo cp cudnn.h /usr/local/cuda/include/

cd ~/cuda/lib64

sudo cp lib* /usr/local/cuda/lib64/

繼續更新文件鏈接
cd /usr/local/cuda/lib64/  

sudo rm -rf libcudnn.so libcudnn.so.4  

sudo ln -s libcudnn.so.4.0.7 libcudnn.so.4  

sudo ln -s libcudnn.so.4 libcudnn.so

然後設置環境變量
sudo gedit /etc/profile

在末尾加入
PATH=/usr/local/cuda/bin:$PATH  

export PATH

保存之後創建鏈接文件
sudo vim /etc/ld.so.conf.d/cuda.conf

鍵盤按i進入編輯狀態,添加文字
/usr/local/cuda/lib64

然後按esc,輸入:wq保存退出。
終端下接著輸入
sudo ldconfig
使鏈接生效
4. 生成Cuda Sample測試
首先在此之前先把需要的依賴包都安裝好,為接下來make caffe做准備
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler

sudo apt-get install --no-install-recommends libboost-all-dev

sudo apt-get install libatlas-base-dev

sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev

然後開始make samples ,終端下
cd /home/gomee/NVIDIA_CUDA-7.5_Samples

sudo make all -j4

我是4核電腦所以用了j4,正常情況下肯定會報錯“unsupported GNU version! gcc versions later than 4.9 are not supported!”,原因就是這個cuda不支持gcc5.0以上,終端運行
cd /usr/local/cuda-7.5/include

cp host_config.h host_config.h.bak

sudo gedit host_config.h

Ctrl+F尋找有”4.9”的地方,應該是只有一處,在其上方的
#if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ > 9)
將兩個4改成5,保存退出,繼續
cd /home/gomee/NVIDIA_CUDA-7.5_Samples

sudo make all -j4

這就應該開始make了,此處大約有5、6分鐘。完成之後
cd /home/gomee/NVIDIA_CUDA-7.5_Samples/bin/x86_64/linux

./deviceQuery

會出現類似以下的信息
CUDA Device Query (Runtime API) version (CUDART static linking)  

Detected 1 CUDA Capable device(s)  

Device 0: "GeForce GTX 750 Ti"  

 CUDA Driver Version / Runtime Version 8.0 / 7.5  

 CUDA Capability Major/Minor version number: 5.0  

 Total amount of global memory: 2047 MBytes (2146762752 bytes)  

 ( 5) Multiprocessors, (128) CUDA Cores/MP: 640 CUDA Cores  

 GPU Max Clock rate: 1228 MHz (1.23 GHz)  

 Memory Clock rate: 3004 Mhz  

 Memory Bus Width: 128-bit  

 L2 Cache Size: 2097152 bytes  

 Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)  

 Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers  

 Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers  

 Total amount of constant memory: 65536 bytes  

 Total amount of shared memory per block: 49152 bytes  

 Total number of registers available per block: 65536  

 Warp size: 32  

 Maximum number of threads per multiprocessor: 2048  

 Maximum number of threads per block: 1024  

 Max dimension size of a thread block (x,y,z): (1024, 1024, 64)  

 Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)  

 Maximum memory pitch: 2147483647 bytes  

 Texture alignment: 512 bytes  

 Concurrent copy and kernel execution: Yes with 1 copy engine(s)  

 Run time limit on kernels: Yes  

 Integrated GPU sharing Host Memory: No  

 Support host page-locked memory mapping: Yes  

 Alignment requirement for Surfaces: Yes  

 Device has ECC support: Disabled  

 Device supports Unified Addressing (UVA): Yes  

 Device PCI Domain ID / Bus ID / location ID: 0 / 1 / 0  

 Compute Mode:  

 < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >  

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 8.0, CUDA Runtime Version = 7.5, NumDevs = 1, Device0 = GeForce GTX 750 Ti  

 Result = PASS

這就說明成功了。
5. Python配置
將之前github下載的caffe壓縮文件解壓縮到任一目錄,然後安裝python
python的版本安裝有兩種方式:
第一是直接安裝anaconda,去官網下載 ,選擇linux 64bit 2.7版本下載安裝,anaconda安裝方便但是需要在最後的make配置文件中更改python包含路徑。
第二種方法就是使用原生的python2.7版本,終端下
sudo apt-get install python-pip
安裝pip
這裡我們用pip安裝一些python需要的依賴包,不過為了避免各種問題,也可以通過apt-get安裝,反正我這兩種方式都安裝了一遍(-.-)
sudo apt-get install python-numpy python-scipy python-matplotlib ipython ipython-notebook python-pandas python-sympy python-nose

以caffe默認解壓到/home/user(你的用戶名)/ ,文件夾名名稱caffe為例
cd /home/user/caffe/python

sudo su

for req in $(cat requirements.txt); do pip install $req; done

這裡用pip安裝可能速度很慢,很可能下載好幾個小時,推薦用清華大學的pip源臨時安裝,所以命令改為如下:
for req in $(cat requirements.txt); do pip install -ihttps://pypi.tuna.tsinghua.edu.cn/simple $req; done

這裡如果第一次有很多紅字錯誤,建議再運行幾遍指導安裝成功,對於黃字提示無需理會,可能是pip版本需要更新。
6. Caffe編譯過程
接下來要進入最後的步驟了,終端中
cd /home/user/caffe

cp Makefile.config.example Makefile.config

gedit Makefile.config

將USE_CUDNN := 1 取消注釋,在
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
後面打上一個空格 然後添加
/usr/include/hdf5/serial
如果沒有這一句可能會報一個找不到hdf5.h的錯誤
PYTHON_INCLUDE := /usr/include/python2.7 \  

   /usr/lib/python2.7/dist-packages/numpy/core/include
先不做更改。
如果是需要生成matlab的caffe wrapper 請取消注釋MATLAB_DIR然後替換為自己的目錄
說一下提前會出現的問題:
第一,make過程中出現比如
string.h ‘memcy’ was not declared in this scope
的錯誤是由於gcc編譯器版本太新,解決方法是打開makefile搜索並替換
NVCCFLAGS += -ccbin=$(CXX) -Xcompiler -fPIC $(COMMON_FLAGS)


NVCCFLAGS += -D_FORCE_INLINES -ccbin=$(CXX) -Xcompiler -fPIC $(COMMON_FLAGS)

保存退出
第二,在make過程中還會報一個ld找不到libhdf5 和libhdf5_hl的鏈接問題,這個原因可能也是因為hdf5的問題,首先看
/usr/lib/x86_64-linux-gnu
目錄下有沒有libhdf5.so和libhdf5_hl.so,如果有的話,查看屬性是否有正確的鏈接(正常情況下應該是沒有這兩個文件),然後右鍵在終端中打開
sudo ln libhdf5_serial.so.10.1.0 libhdf5.so

sudo ln libhdf5_serial_hl.so.10.0.2 libhdf5_hl.so

注意,10.1.0和10.0.2可能不同電腦安裝版本不同,注意看當前目錄下存在的文件然後
sudo ldconfig
生效
接下來就是直接編譯的過程
cd /home/user/caffe

make all -j4

make test -j4

make runtest

make pycaffe

make matcaffe

如果編譯沒報錯正常的話,基本就沒問題了。測試python打開
cd /home/user/caffe/python

python

import caffe

如果不報錯就說明編譯成功
測試matlab打開./caffe/matlab/+caffe/private,看有沒有生成一個caffe的mex文件,可以運行+test文件夾裡面的程序測試。
小問題:
在使用python接口的時候,可能會報一個什麼錯誤(我給忘記了–!),對了是’Mean shape incompatible with input shape.’的錯誤,處理方法是python/caffe文件夾,編輯io.py文件,將
if ms != self.inputs[in_][1:]:

raise ValueError('Mean shape incompatible with input shape.')

替換為
if ms != self.inputs[in_][1:]:  

 print(self.inputs[in_])  

 in_shape = self.inputs[in_][1:]  

 m_min, m_max = mean.min(), mean.max()  

 normal_mean = (mean - m_min) / (m_max - m_min)  

 mean = resize_image(normal_mean.transpose((1,2,0)),in_shape[1:]).transpose((2,0,1)) * (m_max - m_min) + m_min

然後
make clean
再重新make
7. 總結
至此,Ubuntu16.04下編譯Caffe的教程就結束了,作者歷時三天,裝了好幾遍系統,剛開始用Ubuntu14.04,結果系統出現問題,強迫症實在受不了,就嘗試著裝16.04繼續折騰,最終折騰成功。以後可能會更新python3下的編譯教程,需要自己編譯boost版本,總之也很麻煩。
Copyright © Linux教程網 All Rights Reserved