管理構造函數和析構函數中的異常
在全局(靜態全局)變量的構造和析構期間,每個 ANSI C++ 都捕獲到異常是不可能的。因此,ANSI C++ 不建議在那些其實例可能被定義為全局實例(靜態全局實例)的類的構造函數和析構函數中拋出異常。換一種說法就是永遠都不要為那些其構造函數和析構函數可能拋出異常的類定義全局(靜態全局)實例。不過,如果假定有一個特定編譯器和一個特定系統,那麼可能可以這樣做,幸運的是,對於 Linux 上的 GCC,恰好是這種情況。
使用 ExceptionHandler 類可以展示這一點,該類也采用了 singleton 設計模式。其構造函數注冊了一個未捕獲的處理程序。因為每次只能有一個未捕獲的處理程序處理一個活動進程,構造函數應該只被調用一次,因此要采用 singleton 模式。應該在定義有問題的實際全局(靜態全局)變量之前定義 ExceptionHandler 的全局(靜態全局)實例。
清單 3. 處理構造函數中的異常
class ExceptionHandler
{
private:
class SingleTonHandler
{
public:
SingleTonHandler()
{
set_terminate(Handler);
}
static void Handler()
{
// Exception from construction/destruction of global variables
try
{
// re-throw
throw;
}
catch (SegmentationFault &)
{
cout << "SegmentationFault" << endl;
}
catch (FloatingPointException &)
{
cout << "FloatingPointException" << endl;
}
catch (...)
{
cout << "Unknown Exception" << endl;
}
//if this is a thread performing some core activity
abort();
// else if this is a thread used to service requests
// pthread_exit();
}
};
public:
ExceptionHandler()
{
static SingleTonHandler s_objHandler;
}
};
//////////////////////////////////////////////////////////////////////////
class A
{
public:
A()
{
//int i = 0, j = 1/i;
*(int *)0 = 0;
}
};
// Before defining any global variable, we define a dummy instance
// of ExceptionHandler object to make sure that
// ExceptionHandler::SingleTonHandler::SingleTonHandler() is invoked
ExceptionHandler g_objExceptionHandler;
A g_a;
//////////////////////////////////////////////////////////////////////////
int main(int argc, char* argv[])
{
return 0;
}
處理多線程程序中的異常
有時一些異常沒有被捕獲,這將造成進程異常中止。不過很多時候,進程包含多個線程,其中少數線程執行核心應用程序邏輯,同時,其余線程為外部請求提供服務。如果服務線程因編程錯誤而沒有處理某個異常,則會造成整個應用程序崩潰。這一點可能是不受人們歡迎的,因為它會通過向應用程序傳送不合法的請求而助長拒絕服務攻擊N?吮苊庹庖壞悖?床痘翊?沓絛蚩梢躍龆ㄊ喬肭笠斐V兄溝饔茫?故喬肭笙叱掏順龅饔謾G宓?3 中 ExceptionHandler::SingleTonHandler::Handler() 函數的末尾處展示了該處理程序。
結束語
我簡單地討論了少許 C++ 編程設計模式,以便更好地執行以下任務:
·在拋出異常的時候追蹤異常的來源。
·將信號從內核程序轉換成 C++ 異常。
·捕獲構造和/或析構全局變量期間拋出的異常。
·多線程進程中的異常處理。