歡迎來到Linux教程網
Linux教程網
Linux教程網
Linux教程網
您现在的位置: Linux教程網 >> UnixLinux >  >> Linux綜合 >> Linux資訊 >> 更多Linux

內核中的互斥之我見

  /*e4gle:在我修改Linux源代碼的過程中曾被大量的內核互斥現象所困擾,這需要利用內核鎖去解決,雖然最後大部分解決,但我覺得應該留下些什麼,也沒時間寫了,偶爾看見這位兄弟的文章,覺得正是我想整理的,所以拿出來給大家分享,關於bottom_half和中斷的問題,在tcp/ip半底中絕對不能對文件讀寫操作,不然就panic,恰恰我在linux中的增強功能就有這個操作,使我郁悶了很久,歡迎大家討論   */   內核中的互斥之我見   by wheelz   看了前面各位的討論,我也有些想法,與大家商榷。   需要澄清的是,互斥手段的選擇,不是根據臨界區的大小,而是根據臨界區的性質,以及 有哪些部分的代碼,即哪些內核執行路徑來爭奪。   從嚴格意義上說,semaphore和spinlock_XXX屬於不同層次的互斥手段,前者的 實現有賴於後者,這有點象HTTP和TCP的關系,都是協議,但層次是不同的。   先說semaphore,它是進程級的,用於多個進程之間對資源的互斥,雖然也是在 內核中,但是該內核執行路徑是以進程的身份,代表進程來爭奪資源的。如果 競爭不上,會有context switch,進程可以去sleep,但CPU不會停,會接著運行 其他的執行路徑。從概念上說,這和單CPU或多CPU沒有直接的關系,只是在 semaphore本身的實現上,為了保證semaphore結構存取的原子性,在多CPU中需要spinlock來互斥。   在內核中,更多的是要保持內核各個執行路徑之間的數據訪問互斥,這是最基本的互斥問題,即保持數據修改的原子性。semaphore的實現,也要依賴這個。在單CPU中,主要是中斷和bottom_half的問題,因此,開關中斷就可以了。在多CPU中,又加上了其他CPU的干擾,因此需要spinlock來幫助。這兩個部分結合起來,就形成了spinlock_XXX。它的特點是,一旦CPU進入了spinlock_XXX,它就不會干別的,而是一直空轉,直到鎖定成功為止。因此,這就決定了被spinlock_XXX鎖住的臨界區不能停,更不能context switch,要存取完數據後趕快出來,以便其他的在空轉的執行路徑能夠獲得spinlock。這也是spinlock的原則所在。如果當前執行路徑一定要進行context switch,那就要在schedule()之前釋放spinlock,否則,容易死鎖。因為在中斷和bh中,沒有context,無法進行context switch,只能空轉等待spinlock,你context switch走了,誰知道猴年馬月才能回來。   因為spinlock的原意和目的就是保證數據修改的原子性,因此也沒有理由在spinlock 鎖住的臨界區中停留。   spinlock_XXX有很多形式,有   spin_lock()/spin_unlock(),   spin_lock_irq()/spin_unlock_irq(),   spin_lock_irqsave/spin_unlock_irqrestore()   spin_lock_bh()/spin_unlock_bh()   local_irq_disable/local_irq_enable   local_bh_disable/local_bh_enable   那麼,在什麼情況下具體用哪個呢?這要看是在什麼內核執行路徑中,以及要與哪些內核執行路徑相互斥。我們知道,內核中的執行路徑主要有:   1 用戶進程的內核態,此時有進程context,主要是代表進程在執行系統調用 等。   2 中斷或者異常或者自陷等,從概念上說,此時沒有進程context,不能進行   context switch。   3 bottom_half,從概念上說,此時也沒有進程context。   4 同時,相同的執行路徑還可能在其他的CPU上運行。   這樣,考慮這四個方面的因素,通過判斷我們要互斥的數據會被這四個因素中   的哪幾個來存取,就可以決定具體使用哪種形式的spinlock。如果只要和其他CPU互斥,就要用spin_lock/spin_unlock,如果要和irq及其他CPU互斥,就要用   spin_lock_irq/spin_unlock_irq,如果既要和irq及其他CPU互斥,又要保存EFLAG的狀態,就要用spin_lock_irqsave/spin_unlock_irqrestore,如果要和bh及其他CPU互斥,就要用spin_lock_bh/spin_unlock_bh,如果不需要和其他CPU互斥,只要和irq互斥,則用local_irq_disable/local_irq_enable,   如果不需要和其他CPU互斥,只要和bh互斥,則用local_bh_disable/local_bh_enable,   等等。值得指出的是,對同一個數據的互斥,在不同的內核執行路徑中,   所用的形式有可能不同(見下面的例子)。   舉一個例子。在中斷部分中有一個irq_desc_t類型的結構數組變量irq_desc[],   該數組每個成員對應一個irq的描述結構,裡面有該irq的響應函數等。   在irq_desc_t結構中有一個spinlock,用來保證存取(修改)的互斥。   對於具體一個irq成員,irq_desc[irq],對其存取的內核執行路徑有兩個,一是   在設置該irq的響應函數時(setup_irq),這通常發生在module的初始化階段,或   系統的初始化階段;二是在中斷響應函數中(do_IRQ)。代碼如下:   int setup_irq(unsigned int irq, strUCt irqaction * new)   {   int shared = 0;   unsigned long flags;   struct irqaction *old, **p;   irq_desc_t *desc = irq_desc + irq;   /*   * Some drivers like serial.c use request_irq() heavily,   * so we have to be careful not to interfere with a   * running system.   */   if (new->flags & SA_SAMPLE_RANDOM) {   /*   * This function might sleep, we want to call it first,   * outside of the atomic block.   * Yes, this might clear the entropy pool if the wrong   * driver is attempted to be loaded, without actually   * installing a new handler, but is this really a problem,   * only the sysadmin is able to do this.   */   rand_initialize_irq(irq);   }   /*   * The following block of code has to be executed atomically   */   [1] spin_lock_irqsave(&desc->lock,flags);   p = &desc->action;   if ((old = *p) != NULL) {   /* Can't share interrupts unless both agree to */   if (!(old->flags & new->flags & SA_SHIRQ)) {   [2] spin_unlock_irqrestore(&desc->lock,flags);   return -EBUSY;   }   /* add new interrupt at end of irq queue */   do {   p = &old->next;   old = *p;   } while (old);   shared = 1;   }   *p = new;   if (!shared) {   desc->depth = 0;   desc->status &= ~(IRQ_DISABLED IRQ_AUTODETECT IRQ_WAITING);   desc->handler->startup(irq);   }   [3] spin_unlock_irqrestore(&desc->lock,flags);   register_irq_proc(irq);   return 0;   }  asmlinkage unsigned int do_IRQ(struct pt_regs regs)   {   /*   * We ack quickly, we don't want the irq controller   * thinking we're snobs just because some other CPU has   * disabled global interrupts (we have already done the   * INT_ACK cycles, it's too late to try to pretend to the   * controller that we aren't taking the interrupt).   *   * 0 return value means that this irq is already being   * handled by some other CPU. (or is disabled)   */   int irq = regs.orig_eax & 0xff; /* high bits used in ret_from_ code */   int cpu = smp_processor_id();   irq_desc_t *desc = irq_desc + irq;   struct irqaction * action;   unsigned int status;   kstat.irqs[cpu][irq]++;   [4] spin_lock(&desc->lock);   desc->handler->ack(irq);   /*   REPLAY is when Linux resends an IRQ that was dropped earlier   WAITING is used by probe to mark irqs that are being tested   */   status = desc->status & ~(IRQ_REPLAY IRQ_WAITING);   status = IRQ_PENDING; /* we _want_ to handle it */   /*   * If the IRQ is disabled for whatever reason, we cannot   * use the action we have.   */   action = NULL;   if (!(status & (IRQ_DISABLED IRQ_INPROGRESS))) {   action = desc->action;   status &= ~IRQ_PENDING; /* we commit to handling */   status = IRQ_INPROGRESS; /* we are handling it */   }   desc->status = status;   /*   * If there is no IRQ handler or it was disabled, exit early.   Since we set PENDING, if another processor is handling   a different instance of this same irq, the other processor   will take care of it.   */   if (!action)   goto out;   /*   * Edge triggered interrupts need to remember   * pending events.   * This applies to any hw interrupts that allow a second   * instance of the same irq to arrive while we are in do_IRQ   * or in the handler. But the code here only handles the _second_   * instance of the irq, not the third or fourth. So it is mostly   * useful for irq hardware that does not mask cleanly in an   * SMP environment.   */   for (;;) {   [5] spin_unlock(&desc->lock);   handle_IRQ_event(irq, ®s, action);   [6] spin_lock(&desc->lock)




Copyright © Linux教程網 All Rights Reserved