Lock在硬件層面依賴CPU指令,完全由Java代碼完成,底層利用LockSupport類和Unsafe類進行操作;
雖然鎖有很多實現,但是都依賴AbstractQueuedSynchronizer類,我們用ReentrantLock進行講解;
ReentrantLock類的API調用都委托給一個內部類 Sync ,而該類繼承了 AbstractQueuedSynchronizer類;
public class ReentrantLock implements Lock, java.io.Serializable { ...... abstract static class Sync extends AbstractQueuedSynchronizer { ......
而Sync又分為兩個子類:公平鎖和非公平鎖,默認為非公平鎖
/** * Sync object for non-fair locks */ static final class NonfairSync extends Sync {
/** * Sync object for fair locks */ static final class FairSync extends Sync {
Lock的調用過程如下圖(其中涉及到 ReentrantLock類、Sync(抽象類)、AbstractQueuedSynchronizer類,NofairSync類,這些類將 Template方法用的淋漓盡致,相當贊):
先來一張類依賴圖:
再來一張lock調用圖:
自底而上來看,由被調用一步步向上分析
/** * Performs non-fair tryLock. tryAcquire is implemented in * subclasses, but both need nonfair try for trylock method. */ final boolean nonfairTryAcquire(int acquires) { final Thread current = Thread.currentThread(); int c = getState(); if (c == 0) { if (compareAndSetState(0, acquires)) { setExclusiveOwnerThread(current); return true; } } else if (current == getExclusiveOwnerThread()) { int nextc = c + acquires; if (nextc < 0) // overflow throw new Error("Maximum lock count exceeded"); setState(nextc); return true; } return false; }
來看這段代碼,首先獲取當前狀態(初始化為0),當它等於0的時候,代表還沒有任何線程獲得該鎖,然後通過CAS(底層是通過CompareAndSwapInt實現)改變state,並且設置當前線程為持有鎖的線程;其他線程會直接返回false;當該線程重入的時候,state已經不等於0,這個時候並不需要CAS,因為該線程已經持有鎖,然後會重新通過setState設置state的值,這裡就實現了一個偏向鎖的功能,即鎖偏向該線程;
只有當鎖被一個線程持有,另外一個線程請求獲得該鎖的時候才會進入這個方法
/** * Creates and enqueues node for current thread and given mode. * * @param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared * @return the new node */ private Node addWaiter(Node mode) { Node node = new Node(Thread.currentThread(), mode); // Try the fast path of enq; backup to full enq on failure Node pred = tail; if (pred != null) { node.prev = pred; if (compareAndSetTail(pred, node)) { pred.next = node; return node; } } enq(node); return node; }
首先持有該鎖之外的線程進入到該方法,這裡涉及到一個CLH(三個人的名字首字母:Craig, Landin, and Hagersten)隊列,其實就是一個鏈表,
簡單說下CLH隊列:
CLH隊列由node節點組成,mode代表每個Node有兩種模式:共享模式和排他模式,並且維護了一個狀態:waitStatus,可取值如下:
首先,new一個節點,這個時候模式為:mode為 Node.EXCLUSIVE,默認為null即排它鎖;
然後:
如果該隊列已經有node即tail!=null,則將新節點的前驅節點置為tail,再通過CAS將tail指向當前節點,前驅節點的後繼節點指向當前節點,然後返回當前節點;
如果隊列為空或者CAS失敗,則通過enq入隊:
/** * Inserts node into queue, initializing if necessary. See picture above. * @param node the node to insert * @return node's predecessor */ private Node enq(final Node node) { for (;;) { Node t = tail; if (t == null) { // Must initialize if (compareAndSetHead(new Node())) tail = head; } else { node.prev = t; if (compareAndSetTail(t, node)) { t.next = node; return t; } } } }
進隊的時候,要麼是第一個入隊並且設置head節點並且循環設置tail,要麼是add tail,如果CAS不成功,則會無限循環,直到設置成功,即使高並發的場景,也最終能夠保證設置成功,然後返回包裝好的node節點;
/** * Acquires in exclusive uninterruptible mode for thread already in * queue. Used by condition wait methods as well as acquire. * * @param node the node * @param arg the acquire argument * @return {@code true} if interrupted while waiting */ final boolean acquireQueued(final Node node, int arg) { boolean failed = true; try { boolean interrupted = false; for (;;) { final Node p = node.predecessor(); if (p == head && tryAcquire(arg)) { setHead(node); p.next = null; // help GC failed = false; return interrupted; } if (shouldParkAfterFailedAcquire(p, node) && parkAndCheckInterrupt()) interrupted = true; } } finally { if (failed) cancelAcquire(node); } }
該方法的主要作用就是將已經進入虛擬隊列的節點進行阻塞,我們看到,如果當前節點的前驅節點是head並且嘗試獲取鎖的時候成功了,則直接返回,不需要阻塞;
如果前驅節點不是頭節點或者獲取鎖的時候失敗了,則進行判定是否需要阻塞:
/** * Checks and updates status for a node that failed to acquire. * Returns true if thread should block. This is the main signal * control in all acquire loops. Requires that pred == node.prev. * * @param pred node's predecessor holding status * @param node the node * @return {@code true} if thread should block */ private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) { int ws = pred.waitStatus; if (ws == Node.SIGNAL) /* * This node has already set status asking a release * to signal it, so it can safely park. */ return true; if (ws > 0) { /* * Predecessor was cancelled. Skip over predecessors and * indicate retry. */ do { node.prev = pred = pred.prev; } while (pred.waitStatus > 0); pred.next = node; } else { /* * waitStatus must be 0 or PROPAGATE. Indicate that we * need a signal, but don't park yet. Caller will need to * retry to make sure it cannot acquire before parking. */ compareAndSetWaitStatus(pred, ws, Node.SIGNAL); } return false; }
這段代碼對該節點的前驅節點的狀態進行判斷,如果前驅節點已經處於signal狀態,則返回true,表明當前節點可以進入阻塞狀態;
否則,將前驅節點狀態CAS置為signal狀態,然後通過上層的for循環進入parkAndCheckInterrupt代碼塊park:
/** * Convenience method to park and then check if interrupted * * @return {@code true} if interrupted */ private final boolean parkAndCheckInterrupt() { LockSupport.park(this); return Thread.interrupted(); }
這個時候將該線程交給操作系統內核進行阻塞;
總體來講,acquireQueued就是依靠前驅節點的狀態來決定當前線程是否應該處於阻塞狀態,如果前驅節點處於cancel狀態,則丟棄這些節點,重新構建隊列;
流程類似lock api相關類的流程,這裡講主要的代碼,unlock相對的比較簡單
首先 ReentrantLock 調用 Sync的release接口也就是AbstractQueuedSynchronizer的release接口
/** * Releases in exclusive mode. Implemented by unblocking one or * more threads if {@link #tryRelease} returns true. * This method can be used to implement method {@link Lock#unlock}. * * @param arg the release argument. This value is conveyed to * {@link #tryRelease} but is otherwise uninterpreted and * can represent anything you like. * @return the value returned from {@link #tryRelease} */ public final boolean release(int arg) { if (tryRelease(arg)) { Node h = head; if (h != null && h.waitStatus != 0) unparkSuccessor(h); return true; } return false; }
這個時候會先調用Sync的tryRelease,如果返回true,則釋放鎖成功
protected final boolean tryRelease(int releases) { int c = getState() - releases; if (Thread.currentThread() != getExclusiveOwnerThread()) throw new IllegalMonitorStateException(); boolean free = false; if (c == 0) { free = true; setExclusiveOwnerThread(null); } setState(c); return free; }
這個接口的作用很簡單,如果不是獲得鎖的線程調用直接拋出異常,否則,如果當前state-releases==0也就是lock已經完全釋放,返回true,清除資源;
這個返回free之後,release拿到head節點,進入以下代碼:
/** * Wakes up node's successor, if one exists. * * @param node the node */ private void unparkSuccessor(Node node) { /* * If status is negative (i.e., possibly needing signal) try * to clear in anticipation of signalling. It is OK if this * fails or if status is changed by waiting thread. */ int ws = node.waitStatus; if (ws < 0) compareAndSetWaitStatus(node, ws, 0); /* * Thread to unpark is held in successor, which is normally * just the next node. But if cancelled or apparently null, * traverse backwards from tail to find the actual * non-cancelled successor. */ Node s = node.next; if (s == null || s.waitStatus > 0) { s = null; for (Node t = tail; t != null && t != node; t = t.prev) if (t.waitStatus <= 0) s = t; } if (s != null) LockSupport.unpark(s.thread); }
這個作用即:當頭結點的狀態小於0,則將頭結點的狀態CAS為0,然後通過鏈表獲取下一個節點,如果下一個節點為null或者不符合要求的狀態,則從隊尾遍歷整個鏈表,直到遍歷到離head節點最近的一個節點並且
等待狀態符合預期,則將頭結點的後繼節點置為該節點;
對剛剛篩出來的符合要求的節點喚醒,也就是該節點獲得 爭奪 鎖的權利;
這就是非公平鎖的特點:在隊列一直等待的線程不一定比後來的線程先獲得鎖,至此,unlock 已經解釋完成;
凌渡冰 目前就職於美團 Do what you like to impact the world.