1. 解析opencv自帶人臉識別源碼(……/opencv-3.1.0/samples/cpp/facedetect.cpp)
@ 操作系統:Ubuntu 15.04
OpenCV版本:3.1.0
#include "opencv2/objdetect.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>
using namespace std;
using namespace cv;
static void help()
{
cout << "\nThis program demonstrates the cascade recognizer. Now you can use Haar or LBP features.\n"
"This classifier can recognize many kinds of rigid objects, once the appropriate classifier is trained.\n"
"It's most known use is for faces.\n"
"Usage:\n"
"./facedetect [--cascade=<cascade_path> this is the primary trained classifier such as frontal face]\n"
" [--nested-cascade[=nested_cascade_path this an optional secondary classifier such as eyes]]\n"
" [--scale=<image scale greater or equal to 1, try 1.3 for example>]\n"
" [--try-flip]\n"
" [filename|camera_index]\n\n"
"see facedetect.cmd for one call:\n"
"./facedetect --cascade=\"../../data/haarcascades/haarcascade_frontalface_alt.xml\" --nested-cascade=\"../../data/haarcascades/haarcascade_eye_tree_eyeglasses.xml\" --scale=1.3\n\n"
"During execution:\n\tHit any key to quit.\n"
"\tUsing OpenCV version " << CV_VERSION << "\n" << endl;
}
void detectAndDraw( Mat& img, CascadeClassifier& cascade,
CascadeClassifier& nestedCascade,
double scale, bool tryflip );
string cascadeName;
string nestedCascadeName;
int main( int argc, const char** argv )
{
VideoCapture capture;
Mat frame, image;
string inputName;
bool tryflip;
// CascadeClassifier是Opencv中做人臉檢測的時候的一個級聯分類器,現在有兩種選擇:一是使用老版本的CvHaarClassifierCascade函數,一是使用新版本的CascadeClassifier類。老版本的分類器只支持類Haar特征,而新版本的分類器既可以使用Haar,也可以使用LBP特征。
CascadeClassifier cascade, nestedCascade;
double scale;
cv::CommandLineParser parser(argc, argv,
"{help h||}"
"{cascade|../../data/haarcascades/haarcascade_frontalface_alt.xml|}"
"{nested-cascade|../../data/haarcascades/haarcascade_eye_tree_eyeglasses.xml|}"
"{scale|1|}{try-flip||}{@filename||}"
);
if (parser.has("help"))
{
help();
return 0;
}
// 問題1:不用定義返回類型?
cascadeName = parser.get<string>("cascade");
nestedCascadeName = parser.get<string>("nested-cascade");
scale = parser.get<double>("scale");
if (scale < 1)
scale = 1;
tryflip = parser.has("try-flip");
inputName = parser.get<string>("@filename");
std::cout << inputName << std::endl; // test
if (!parser.check())
{
parser.printErrors();
return 0;
}
// 加載模型
if ( !nestedCascade.load( nestedCascadeName ) )
cerr << "WARNING: Could not load classifier cascade for nested objects" << endl;
if( !cascade.load( cascadeName ) )
{
cerr << "ERROR: Could not load classifier cascade" << endl;
help();
return -1;
}
// 讀取攝像頭
// isdigit檢測字符是否為阿拉伯數字
if( inputName.empty() || (isdigit(inputName[0]) && inputName.size() == 1) )
{
int c = inputName.empty() ? 0 : inputName[0] - '0';
// 此處若系統在虛擬機上,需在虛擬機中設置接管攝像頭:虛擬機(M)-> 可移動設備 -> 攝像頭名稱 -> 連接(斷開與主機連接)
if(!capture.open(c))
cout << "Capture from camera #" << c << " didn't work" << endl;
else {
capture.set(CV_CAP_PROP_FRAME_WIDTH, 640);
capture.set(CV_CAP_PROP_FRAME_HEIGHT, 480);
}
}
else if( inputName.size() )
{
image = imread( inputName, 1 );
if( image.empty() )
{
if(!capture.open( inputName ))
cout << "Could not read " << inputName << endl;
}
}
else
{
image = imread( "../data/lena.jpg", 1 );
if(image.empty()) cout << "Couldn't read ../data/lena.jpg" << endl;
}
if( capture.isOpened() )
{
cout << "Video capturing has been started ..." << endl;
for(;;)
{
std::cout << "capturing..." << std::endl; // test
capture >> frame;
if( frame.empty() )
break;
Mat frame1 = frame.clone();
std::cout << "Start to detect..." << std::endl; // test
detectAndDraw( frame1, cascade, nestedCascade, scale, tryflip );
int c = waitKey(10);
if( c == 27 || c == 'q' || c == 'Q' )
break;
}
}
else
{
cout << "Detecting face(s) in " << inputName << endl;
if( !image.empty() )
{
detectAndDraw( image, cascade, nestedCascade, scale, tryflip );
waitKey(0);
}
else if( !inputName.empty() )
{
/* assume it is a text file containing the
list of the image filenames to be processed - one per line */
FILE* f = fopen( inputName.c_str(), "rt" );
if( f )
{
char buf[1000+1];
while( fgets( buf, 1000, f ) )
{
int len = (int)strlen(buf), c;
while( len > 0 && isspace(buf[len-1]) )
len--;
buf[len] = '\0';
cout << "file " << buf << endl;
image = imread( buf, 1 );
if( !image.empty() )
{
detectAndDraw( image, cascade, nestedCascade, scale, tryflip );
c = waitKey(0);
if( c == 27 || c == 'q' || c == 'Q' )
break;
}
else
{
cerr << "Aw snap, couldn't read image " << buf << endl;
}
}
fclose(f);
}
}
}
return 0;
}
void detectAndDraw( Mat& img, CascadeClassifier& cascade,
CascadeClassifier& nestedCascade,
double scale, bool tryflip )
{
double t = 0;
vector<Rect> faces, faces2;
const static Scalar colors[] =
{
Scalar(255,0,0),
Scalar(255,128,0),
Scalar(255,255,0),
Scalar(0,255,0),
Scalar(0,128,255),
Scalar(0,255,255),
Scalar(0,0,255),
Scalar(255,0,255)
};
Mat gray, smallImg;
cvtColor( img, gray, COLOR_BGR2GRAY );
double fx = 1 / scale;
resize( gray, smallImg, Size(), fx, fx, INTER_LINEAR );
equalizeHist( smallImg, smallImg );
t = (double)cvGetTickCount();
cascade.detectMultiScale( smallImg, faces,
1.1, 2, 0
//|CASCADE_FIND_BIGGEST_OBJECT
//|CASCADE_DO_ROUGH_SEARCH
|CASCADE_SCALE_IMAGE,
Size(30, 30) );
if( tryflip )
{
flip(smallImg, smallImg, 1);
cascade.detectMultiScale( smallImg, faces2,
1.1, 2, 0
//|CASCADE_FIND_BIGGEST_OBJECT
//|CASCADE_DO_ROUGH_SEARCH
|CASCADE_SCALE_IMAGE,
Size(30, 30) );
for( vector<Rect>::const_iterator r = faces2.begin(); r != faces2.end(); r++ )
{
faces.push_back(Rect(smallImg.cols - r->x - r->width, r->y, r->width, r->height));
}
}
t = (double)cvGetTickCount() - t;
printf( "detection time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) );
for ( size_t i = 0; i < faces.size(); i++ )
{
Rect r = faces[i];
Mat smallImgROI;
vector<Rect> nestedObjects;
Point center;
Scalar color = colors[i%8];
int radius;
double aspect_ratio = (double)r.width/r.height;
if( 0.75 < aspect_ratio && aspect_ratio < 1.3 )
{
center.x = cvRound((r.x + r.width*0.5)*scale);
center.y = cvRound((r.y + r.height*0.5)*scale);
radius = cvRound((r.width + r.height)*0.25*scale);
circle( img, center, radius, color, 3, 8, 0 );
}
else
rectangle( img, cvPoint(cvRound(r.x*scale), cvRound(r.y*scale)),
cvPoint(cvRound((r.x + r.width-1)*scale), cvRound((r.y + r.height-1)*scale)),
color, 3, 8, 0);
if( nestedCascade.empty() )
continue;
smallImgROI = smallImg( r );
nestedCascade.detectMultiScale( smallImgROI, nestedObjects,
1.1, 2, 0
//|CASCADE_FIND_BIGGEST_OBJECT
//|CASCADE_DO_ROUGH_SEARCH
//|CASCADE_DO_CANNY_PRUNING
|CASCADE_SCALE_IMAGE,
Size(30, 30) );
for ( size_t j = 0; j < nestedObjects.size(); j++ )
{
Rect nr = nestedObjects[j];
center.x = cvRound((r.x + nr.x + nr.width*0.5)*scale);
center.y = cvRound((r.y + nr.y + nr.height*0.5)*scale);
radius = cvRound((nr.width + nr.height)*0.25*scale);
circle( img, center, radius, color, 3, 8, 0 );
}
}
imshow( "result", img );
}
問題未解決:
運行到capture>>frame;時出現select timeout的錯誤;
@ 操作系統:Windows 10
OpenCV版本:3.1.0
代碼與Linux版本基本相同,未出現錯誤;
OpenCV官方教程中文版(For Python) PDF http://www.linuxidc.com/Linux/2015-08/121400.htm
Ubuntu Linux下安裝OpenCV2.4.1所需包 http://www.linuxidc.com/Linux/2012-08/68184.htm
Ubuntu 16.04上用CMake圖形界面交叉編譯樹莓派的OpenCV3.0 http://www.linuxidc.com/Linux/2016-10/135914.htm
Ubuntu 12.04下安裝OpenCV 2.4.5總結 http://www.linuxidc.com/Linux/2013-06/86704.htm
Ubuntu 10.04中安裝OpenCv2.1九步曲 http://www.linuxidc.com/Linux/2010-09/28678.htm
基於QT和OpenCV的人臉識別系統 http://www.linuxidc.com/Linux/2011-11/47806.htm
[翻譯]Ubuntu 14.04, 13.10 下安裝 OpenCV 2.4.9 http://www.linuxidc.com/Linux/2014-12/110045.htm
OpenCV的詳細介紹:請點這裡
OpenCV的下載地址:請點這裡