歡迎來到Linux教程網
Linux教程網
Linux教程網
Linux教程網
您现在的位置: Linux教程網 >> UnixLinux >  >> Linux編程 >> Linux編程

Java基礎——原碼, 反碼, 補碼 詳解

上一篇提到了原碼、反碼和補碼(見 http://www.linuxidc.com/Linux/2015-02/113862.htm),可是自己又捋了半天,有點懂了的樣子,可是又不能清晰的表達。暫且記住以下兩點吧:

       正數的反碼和補碼都與原碼一樣;

       負數的反碼、補碼與原碼不同,負數的反碼:原碼中除去符號位,其他的數值位取反,0變1,1變0。負數的補碼:其反碼+1.   

       做個小Demo,分別寫出7和-7的原碼、反碼、補碼。(其中第一位是符號位,0表示正數,1表示負數)

Demo

7

-7

原碼

00000111

10000111

反碼

00000111

11111000

補碼

00000111

11111001

       寫到這裡,就准備著手解決一下上一篇博文提到的byte類型的最小值是10000000  ,為-128的問題,可是小弟才疏學淺,解釋不清楚了啊,最後拜讀了一下某技術大牛的博文,終於有點醍醐灌頂的感覺,文章由淺入深進行分析,值得一看,轉載原文如下,希望能給大家帶來些許幫助。同時也向原作者表示感謝。

本篇文章講解了計算機的原碼, 反碼和補碼. 並且進行了深入探求了為何要使用反碼和補碼, 以及更進一步的論證了為何可以用反碼, 補碼的加法計算原碼的減法. 論證部分如有不對的地方請各位牛人幫忙指正! 希望本文對大家學習計算機基礎有所幫助! 

一. 機器數和真值

在學習原碼, 反碼和補碼之前, 需要先了解機器數和真值的概念.

1、機器數

一個數在計算機中的二進制表示形式,  叫做這個數的機器數。機器數是帶符號的,在計算機用一個數的最高位存放符號, 正數為0, 負數為1.

比如,十進制中的數 +3 ,計算機字長為8位,轉換成二進制就是00000011。如果是 -3 ,就是 10000011 。

那麼,這裡的 00000011 和 10000011 就是機器數。

2、真值

因為第一位是符號位,所以機器數的形式值就不等於真正的數值。例如上面的有符號數 10000011,其最高位1代表負,其真正數值是 -3 而不是形式值131(10000011轉換成十進制等於131)。所以,為區別起見,將帶符號位的機器數對應的真正數值稱為機器數的真值。

例:0000 0001的真值 = +000 0001 = +1,1000 0001的真值 = –000 0001 = –1

 

二. 原碼, 反碼, 補碼的基礎概念和計算方法.

在探求為何機器要使用補碼之前, 讓我們先了解原碼, 反碼和補碼的概念.對於一個數, 計算機要使用一定的編碼方式進行存儲. 原碼, 反碼, 補碼是機器存儲一個具體數字的編碼方式.

1. 原碼

原碼就是符號位加上真值的絕對值, 即用第一位表示符號, 其余位表示值. 比如如果是8位二進制:

[+1] = 0000 0001

[-1] = 1000 0001

第一位是符號位. 因為第一位是符號位, 所以8位二進制數的取值范圍就是:

[1111 1111 , 0111 1111]

[-127 , 127]

原碼是人腦最容易理解和計算的表示方式.

2. 反碼

反碼的表示方法是:

正數的反碼是其本身

負數的反碼是在其原碼的基礎上, 符號位不變,其余各個位取反.

[+1] = [00000001] = [00000001]

[-1] = [10000001] = [11111110]

可見如果一個反碼表示的是負數, 人腦無法直觀的看出來它的數值. 通常要將其轉換成原碼再計算.

3. 補碼

補碼的表示方法是:

正數的補碼就是其本身

負數的補碼是在其原碼的基礎上, 符號位不變, 其余各位取反, 最後+1. (即在反碼的基礎上+1)

[+1] = [00000001] = [00000001] = [00000001]

[-1] = [10000001] = [11111110] = [11111111]

對於負數, 補碼表示方式也是人腦無法直觀看出其數值的. 通常也需要轉換成原碼在計算其數值.

 

三. 為何要使用原碼, 反碼和補碼

在開始深入學習前, 我的學習建議是先"死記硬背"上面的原碼, 反碼和補碼的表示方式以及計算方法.

現在我們知道了計算機可以有三種編碼方式表示一個數. 對於正數因為三種編碼方式的結果都相同:

[+1] = [00000001] = [00000001] = [00000001]

所以不需要過多解釋. 但是對於負數:

[-1] = [10000001] = [11111110] = [11111111]

可見原碼, 反碼和補碼是完全不同的. 既然原碼才是被人腦直接識別並用於計算表示方式, 為何還會有反碼和補碼呢?

首先, 因為人腦可以知道第一位是符號位, 在計算的時候我們會根據符號位, 選擇對真值區域的加減. (真值的概念在本文最開頭). 但是對於計算機, 加減乘數已經是最基礎的運算, 要設計的盡量簡單. 計算機辨別"符號位"顯然會讓計算機的基礎電路設計變得十分復雜! 於是人們想出了將符號位也參與運算的方法. 我們知道, 根據運算法則減去一個正數等於加上一個負數, 即: 1-1 = 1 + (-1) = 0 , 所以機器可以只有加法而沒有減法, 這樣計算機運算的設計就更簡單了.

於是人們開始探索 將符號位參與運算, 並且只保留加法的方法. 首先來看原碼:

計算十進制的表達式: 1-1=0

1 - 1 = 1 + (-1) = [00000001] + [10000001] = [10000010] = -2

如果用原碼表示, 讓符號位也參與計算, 顯然對於減法來說, 結果是不正確的.這也就是為何計算機內部不使用原碼表示一個數.

為了解決原碼做減法的問題, 出現了反碼:

計算十進制的表達式: 1-1=0

1 - 1 = 1 + (-1) = [0000 0001] + [1000 0001]= [0000 0001] + [1111 1110] = [1111 1111] = [1000 0000] = -0

發現用反碼計算減法, 結果的真值部分是正確的. 而唯一的問題其實就出現在"0"這個特殊的數值上. 雖然人們理解上+0和-0是一樣的, 但是0帶符號是沒有任何意義的. 而且會有[0000 0000]和[1000 0000]兩個編碼表示0.

於是補碼的出現, 解決了0的符號以及兩個編碼的問題:

1-1 = 1 + (-1) = [0000 0001] + [1000 0001] = [0000 0001] + [1111 1111] = [0000 0000]=[0000 0000]

這樣0用[0000 0000]表示, 而以前出現問題的-0則不存在了.而且可以用[1000 0000]表示-128:

(-1) + (-127) = [1000 0001] + [1111 1111] = [1111 1111] + [1000 0001] = [1000 0000]

-1-127的結果應該是-128, 在用補碼運算的結果中, [1000 0000] 就是-128. 但是注意因為實際上是使用以前的-0的補碼來表示-128, 所以-128並沒有原碼和反碼表示.(對-128的補碼表示[1000 0000]補算出來的原碼是[0000 0000], 這是不正確的)

使用補碼, 不僅僅修復了0的符號以及存在兩個編碼的問題, 而且還能夠多表示一個最低數. 這就是為什麼8位二進制, 使用原碼或反碼表示的范圍為[-127, +127], 而使用補碼表示的范圍為[-128, 127].

因為機器使用補碼, 所以對於編程中常用到的32位int類型, 可以表示范圍是: [-231, 231-1] 因為第一位表示的是符號位.而使用補碼表示時又可以多保存一個最小值.

 

四 原碼, 反碼, 補碼 再深入

計算機巧妙地把符號位參與運算, 並且將減法變成了加法, 背後蘊含了怎樣的數學原理呢?

將鐘表想象成是一個1位的12進制數. 如果當前時間是6點, 我希望將時間設置成4點, 需要怎麼做呢?我們可以:

1. 往回撥2個小時: 6 - 2 = 4

2. 往前撥10個小時: (6 + 10) mod 12 = 4

3. 往前撥10+12=22個小時: (6+22) mod 12 =4

2,3方法中的mod是指取模操作, 16 mod 12 =4 即用16除以12後的余數是4.

所以鐘表往回撥(減法)的結果可以用往前撥(加法)替代!

現在的焦點就落在了如何用一個正數, 來替代一個負數. 上面的例子我們能感覺出來一些端倪, 發現一些規律. 但是數學是嚴謹的. 不能靠感覺.

首先介紹一個數學中相關的概念: 同余

 

同余的概念

兩個整數a,b,若它們除以整數m所得的余數相等,則稱a,b對於模m同余

記作 a ≡ b (mod m)

讀作 a 與 b 關於模 m 同余。

舉例說明:

4 mod 12 = 4

16 mod 12 = 4

28 mod 12 = 4

所以4, 16, 28關於模 12 同余.

 

負數取模

正數進行mod運算是很簡單的. 但是負數呢?

下面是關於mod運算的數學定義:

上面是截圖, "取下界"符號找不到如何輸入(word中粘貼過來後亂碼). 下面是使用"L"和"J"替換上圖的"取下界"符號:

x mod y = x - y L x / y J

上面公式的意思是:

x mod y等於 x 減去 y 乘上 x與y的商的下界.

以 -3 mod 2 舉例:

-3 mod 2

= -3 - 2xL -3/2 J

= -3 - 2xL-1.5J

= -3 - 2x(-2)

= -3 + 4 = 1

所以:

(-2) mod 12 = 12-2=10

(-4) mod 12 = 12-4 = 8

(-5) mod 12 = 12 - 5 = 7

 

開始證明

再回到時鐘的問題上:

回撥2小時 = 前撥10小時

回撥4小時 = 前撥8小時

回撥5小時= 前撥7小時

注意, 這裡發現的規律!

結合上面學到的同余的概念.實際上:

(-2) mod 12 = 10

10 mod 12 = 10

-2與10是同余的.

(-4) mod 12 = 8

8 mod 12 = 8

-4與8是同余的.

距離成功越來越近了. 要實現用正數替代負數, 只需要運用同余數的兩個定理:

反身性:

a ≡ a (mod m)

這個定理是很顯而易見的.

線性運算定理:

如果a ≡ b (mod m),c ≡ d (mod m) 那麼:

(1)a ± c ≡ b ± d (mod m)

(2)a * c ≡ b * d (mod m)

如果想看這個定理的證明, 請看:http://baike.baidu.com/view/79282.htm

所以:

7 ≡ 7 (mod 12)

(-2) ≡ 10 (mod 12)

7 -2 ≡ 7 + 10 (mod 12)

現在我們為一個負數, 找到了它的正數同余數. 但是並不是7-2 = 7+10, 而是 7 -2 ≡ 7 + 10 (mod 12) , 即計算結果的余數相等.

接下來回到二進制的問題上, 看一下: 2-1=1的問題.

2-1=2+(-1) = [0000 0010] + [1000 0001]= [0000 0010] + [1111 1110]

先到這一步, -1的反碼表示是1111 1110. 如果這裡將[1111 1110]認為是原碼, 則[1111 1110]原 = -126, 這裡將符號位除去, 即認為是126.

發現有如下規律:

(-1) mod 127 = 126

126 mod 127 = 126

即:

(-1) ≡ 126 (mod 127)

2-1 ≡ 2+126 (mod 127)

2-1 與 2+126的余數結果是相同的! 而這個余數, 正式我們的期望的計算結果: 2-1=1

所以說一個數的反碼, 實際上是這個數對於一個膜的同余數. 而這個膜並不是我們的二進制, 而是所能表示的最大值! 這就和鐘表一樣, 轉了一圈後總能找到在可表示范圍內的一個正確的數值!

而2+126很顯然相當於鐘表轉過了一輪, 而因為符號位是參與計算的, 正好和溢出的最高位形成正確的運算結果.

既然反碼可以將減法變成加法, 那麼現在計算機使用的補碼呢? 為什麼在反碼的基礎上加1, 還能得到正確的結果?

2-1=2+(-1) = [0000 0010] + [1000 0001] = [0000 0010] + [1111 1111]

如果把[1111 1111]當成原碼, 去除符號位, 則:

[0111 1111] = 127

其實, 在反碼的基礎上+1, 只是相當於增加了膜的值:

(-1) mod 128 = 127

127 mod 128 = 127

2-1 ≡ 2+127 (mod 128)

此時, 表盤相當於每128個刻度轉一輪. 所以用補碼表示的運算結果最小值和最大值應該是[-128, 128].

但是由於0的特殊情況, 沒有辦法表示128, 所以補碼的取值范圍是[-128, 127]

本人一直不善於數學, 所以如果文中有不對的地方請大家多多包含, 多多指點!

Copyright © Linux教程網 All Rights Reserved