歡迎來到Linux教程網
Linux教程網
Linux教程網
Linux教程網
您现在的位置: Linux教程網 >> UnixLinux >  >> Linux編程 >> Linux編程

C/C++程序內存分配詳解

一個由C/C++編譯的程序占用的內存分為以下幾個部分

1、棧區(stack)— 程序運行時由編譯器自動分配,存放函數的參數值,局部變量的值等。其操作方式類似於數據結構中的棧。程序結束時由編譯器自動釋放。

2、堆區(heap) — 在內存開辟另一塊存儲區域。一般由程序員分配釋放, 若程序員不釋放,程序結束時可能由OS回收 。注意它與數據結構中的堆是兩回事,分配方式倒是類似於鏈表,呵呵。

3、全局區(靜態區)(static)—編譯器編譯時即分配內存。全局變量和靜態變量的存儲是放在一塊的,初始化的 全局變量和靜態變量在一塊區域, 未初始化的全局變量和未初始化的靜態變量在相鄰的另一塊區域。 - 程序結束後由系統釋放

4、文字常量區 —常量字符串就是放在這裡的。 程序結束後由系統釋放

5、程序代碼區—存放函數體的二進制代碼。

例子程序

這是一個前輩寫的,非常詳細

//main.cpp

int a = 0; 全局初始化區

char *p1; 全局未初始化區

main()

{

int b;// 棧

char s[] = "abc"; //棧

char *p2; //棧

char *p3 = "123456"; //"123456\0"在常量區,p3在棧上。

static int c =0; //全局(靜態)初始化區

p1 = (char *)malloc(10);

p2 = (char *)malloc(20);

//分配得來得10和20字節的區域就在堆區。

strcpy(p1, "123456"); //123456\0放在常量區,編譯器可能會將它與p3所指向的"123456"優化成一個地方。

}

===============

C語言程序的內存分配方式

1.內存分配方式
內存分配方式有三種:
[1]從靜態存 儲區域分配。內存在程序編譯的時候就已經分配好,這塊內存在程序的整個運行期間都存在。例如全局變量,static變量。
[2]在棧上創建。 在執行函數時,函數內局部變量的存儲單元都可以在棧上創建,函數執行結束時這些存儲單元自動被釋放。棧內存分配運算內置於處理器的指令集中,效率很高,但 是分配的內存容量有限。
[3]從堆上分配,亦稱動態內存分配。程序在運行的時候用malloc或new申請任意多少的內存,程序員自己負責在 何時用free或delete釋放內存。動態內存的生存期由程序員決定,使用非常靈活,但如果在堆上分配了空間,就有責任回收它,否則運行的程序會出現內 存洩漏,頻繁地分配和釋放不同大小的堆空間將會產生堆內碎塊。
2.程序的內存空間
一個程序將操作 系統分配給其運行的內存塊分為4個區域,如下圖所示。
一個由C/C++編譯的程序占用的內存分為以下幾個部分,
1、棧區(stack)—  由編譯器自動分配釋放 ,存放為運行函數而分配的局部變量、函數參數、返回數據、返回地址等。其操作方式類似於數據結構中的棧。
2、堆區(heap) —  一般由程序員分配釋放, 若程序員不釋放,程序結束時可能由OS回收 。分配方式類似於鏈表。
3、全局區(靜態區)(static) —存放全局變量、靜態數據、常量。程序結束後由系統釋放。
4、文字常量區 —常量字符串就是放在這裡的。 程序結束後由系統釋放。
5、程序代碼區—存放函數體(類成員函數和全局函數)的二進制代碼。
下面給出例子程序,
int a = 0; //全局初始化區
char *p1; //全局未初始化區
int main() {
int b; //棧
char s[] = "abc"; //棧
char *p2; //棧
char *p3 = "123456"; //123456在常量區,p3在棧上。
static int c =0;//全局(靜態)初始化區
p1 = new char[10];
p2 = new char[20];
//分配得來得和字節的區域就在堆區。
strcpy(p1, "123456"); //123456放在常量區,編譯器可能會將它與p3所指向的"123456"優化成一個地方。
}
3.堆與棧的比較
3.1申請方式
stack: 由系統自動分配。 例如,聲明在函數中一個局部變量 int b; 系統自動在棧中為b開辟空間。
heap: 需要程序員自己申請,並指明大小,在C中malloc函數,C++中是new運算符。
如p1 = (char *)malloc(10); p1 = new char[10];
如p2 = (char *)malloc(10); p2 = new char[20];
但是注意p1、p2本身是在棧中的。
3.2申請後系統的響應
棧:只要棧的剩余空間大於所申請空間,系統將為程序提供內存,否則 將報異常提示棧溢出。
堆:首先應該知道操作系統有一個記錄空閒內存地址的鏈表,當系統收到程序的申請時,會遍歷該鏈表,尋找第一個空間大於所 申請空間的堆結點,然後將該結點從空閒結點鏈表中刪除,並將該結點的空間分配給程序。
對於大多數系統,會在這塊內存空間中的首地址處記錄本次 分配的大小,這樣,代碼中的delete語句才能正確的釋放本內存空間。
由於找到的堆結點的大小不一定正好等於申請的大小,系統會自動的將多 余的那部分重新放入空閒鏈表中。
3.3申請大小的限制
棧:在Windows下,棧是向低地址擴展的數據結構,是一塊連續的內存的區域。這句話的意思是棧頂的地址和棧的最大容量是系統預先規定好的, 在 WINDOWS下,棧的大小是2M(也有的說是1M,總之是一個編譯時就確定的常數),如果申請的空間超過棧的剩余空間時,將提示overflow。因 此,能從棧獲得的空間較小。
堆:堆是向高地址擴展的數據結構, 是不連續的內存區域。這是由於系統是用鏈表來存儲的空閒內存地址的,自然是不連續的,而鏈表的遍歷方向是由低地址向高地址。堆的大小受限於計算機系統中有 效的虛擬內存。由此可見,堆獲得的空間比較靈活,也比較大。
3.4申請效率的比較
棧由系統自動分配,速度較快。但 程序員是無法控制的。
堆是由new分配的內存,一般速度比較慢,而且容易產生內存碎片,不過用起來最方便。
另外,在 WINDOWS下,最好的方式是用VirtualAlloc分配內存,他不是在堆,也不是棧,而是直接在進程的地址空間中保留一快內存,雖然用起來最不方 便。但是速度快,也最靈活。
3.5堆和棧中的存儲內容
棧:在函數調用時,第一個進棧的是主函數中後的下一條指令(函數調用語句的 下一條可執行語句)的地址,然後是函數的各個參數,在大多數的C編譯器中,參數是由右往左入棧的,然後是函數中的局部變量。注意靜態變量是不入棧的。
當本次函數調用結束後,局部變量先出棧,然後是參數,最後棧頂指針指向最開始存的地址,也就是主函數中的下一條指令,程序由該點繼續運行。
堆:一般是在堆的頭部用一個字節存放堆的大小。堆中的具體內容有程序員安排。
3.6存取效率的比較
char s1[] = "a";
char *s2 = "b";
a是在運行時刻賦值的;而b是在編譯時就確定的;但是,在以後的存取中,在棧上的數組比 指針所指向的字符串(例如堆)快。 比如:
int main(){
char a = 1;
char c[] = "1234567890";
char *p ="1234567890";
a = c[1];
a = p[1];
return 0;
}
對應的匯編代碼
10: a = c[1];
00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh]
0040106A 88 4D FC mov byte ptr [ebp-4],cl
11: a = p[1];
0040106D 8B 55 EC mov edx,dword ptr [ebp-14h]
00401070 8A 42 01 mov al,byte ptr [edx+1]
00401073 88 45 FC mov byte ptr [ebp-4],al
第一種在讀取時直接就把字符串中的元素讀到寄存器cl中,而第二種則要先 把指針值讀到edx中,再根據edx讀取字符,顯然慢了。

更多詳情見請繼續閱讀下一頁的精彩內容: http://www.linuxidc.com/Linux/2013-10/91628p2.htm

Copyright © Linux教程網 All Rights Reserved