本實驗通過程序模擬采集大量的樣本數據來驗證辛欽大數定理。
實驗環境:
本實驗采用Java語言編程,開發環境為Eclipse,圖像生成使用JFreeChart類。
一,驗證辛欽大數定理
由辛欽大數定理描述為:
辛欽大數定理(弱大數定理) 設隨機變量序列 X1, X2, … 相互獨立,服從同一分布,具有數學期望E(Xi) = μ, i = 1, 2, …, 則對於任意正數ε ,有
即
實驗思路:
實驗產生的隨機變量Xi服從均勻分布與(0-1)分布,即X~U(0,1)或X~b(1,0.5)首先隨機產生5000(0,1)內,已知X服從均勻分布或(0-1)分布,所以均值E(X)=(a+b)/2=0.5。且隨機變量的方差相等,統計樣本容量為n的樣本算術平均值,n以10為步長線性增加,畫出()的圖像,將其與y=0.5的圖像對比,可得,當n越來越大時,趨向於均值E(X)=0.5,即
實驗畫得如下圖一:
圖一
由圖可看出,當數據點足夠多時
實驗程序如下,程序已經加上注釋:
import java.awt.Color;
import java.util.Random;
import java.util.SortedSet;
import java.util.TreeSet;
import org.jfree.chart.ChartFactory;
import org.jfree.chart.ChartFrame;
import org.jfree.chart.JFreeChart;
import org.jfree.chart.axis.NumberAxis;
import org.jfree.chart.plot.PlotOrientation;
import org.jfree.chart.plot.XYPlot;
import org.jfree.chart.renderer.xy.XYLineAndShapeRenderer;
import org.jfree.data.category.DefaultCategoryDataset;
import org.jfree.data.function.Function2D;
import org.jfree.data.function.NormalDistributionFunction2D;
import org.jfree.data.general.DatasetGroup;
import org.jfree.data.general.DatasetUtilities;
import org.jfree.data.xy.XYDataset;
import org.jfree.data.xy.XYSeries;
import org.jfree.data.xy.XYSeriesCollection;
public class KhinchinBigDataTheorem {
/*********************************
*樣本點集
********************************/
private static XYSeriesCollection dataset=new XYSeriesCollection();
/**********************************
* getXYSeriesCollection()
* 獲得樣本點XY坐標點集XYSeriesCollection
* @return
*********************************/
public static XYSeriesCollection getXYSeriesCollection(){
XYSeries series= new XYSeries("Khinchin");
int sampleSize=5000; //驗證樣本容量
int bin=10; //以步長為bin進行樣本概率統計
int poltSize=sampleSize/bin; //樣本分成的區間數
double[] sampleProbability=new double[poltSize]; //每個區間內出現的點得數量的矩陣
double[] XAxis=new double[poltSize]; //每個區間所采取的Xi(X軸坐標點)的矩陣
for (int i = 0; i < XAxis.length; i++) {
sampleProbability[i]=0;
XAxis[i]=0;
}
/***************************************************
* 產生500000個(0,1)內均勻分布與(0-1)分布的樣本點
* 畫出樣本數量從少到多的算術平均值趨向於均值的差距
***************************************************/
double u=0.5; //樣本服從的均值
double[] samplePoints=new double[sampleSize]; //分布的樣本點
int su=0;
for (int i = 0; i < samplePoints.length; i++) {
//交替產生均勻分布與(0-1)分布樣本點
if (i%2==0) {
samplePoints[i]=new Random().nextDouble();
}else {
samplePoints[i]=generator(0.5);
}
}
double sum=0;
for (int i = 0; i < samplePoints.length; i++) {
sum+=samplePoints[i];
if (i%bin==0) {
XAxis[i/bin]=i;
sampleProbability[i/bin]=sum/(i+1);
//System.out.println(sampleProbability[i/bin]);
}
}
for (int i = 0; i < poltSize ; i++) {
series.add(XAxis[i], sampleProbability[i]);
}
dataset.addSeries(series);
return dataset;
}
/**********************************************
* 產生概率為0.5的(0-1)分布點
* @param p
* @return
**********************************************/
public static int generator(double p){
Random random=new Random();
double g=random.nextDouble();
int i=0;
if(g<p){
i=1;
}else {
i=0;
}
return i;
}
public XYSeriesCollection dataset1;
public JFreeChart chart;
public XYPlot plot;
public KhinchinBigDataTheorem() {
//KhinchinBigDataTheorem centerLimit=new KhinchinBigDataTheorem();
dataset1=getXYSeriesCollection();
//獲取樣本數據集
XYSeriesCollection dataset=new XYSeriesCollection();
XYSeries series= new XYSeries("0.5 Line");
for (int i = 0; i < 500; i++) {
series.add(i*10.0, 0.5);
}
dataset.addSeries(series);
chart = ChartFactory.createXYLineChart("MultiAxis", "X axis",
"First Y Axis", dataset1, PlotOrientation.VERTICAL, true, true,
false);
plot = chart.getXYPlot();
plot.setDataset(1, dataset);
XYLineAndShapeRenderer render2 = new XYLineAndShapeRenderer();
render2.setSeriesPaint(0, Color.BLUE);
plot.setRenderer(1, render2);
}
public static void main(String[] agrs) {
KhinchinBigDataTheorem obj = new KhinchinBigDataTheorem();
ChartFrame frame = new ChartFrame("多坐標軸", obj.chart);
frame.pack();
frame.setVisible(true);
}
}