計算素數的一個方法是埃氏篩法,它的算法理解起來非常簡單:
首先,列出從2
開始的所有自然數,構造一個序列:
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
取序列的第一個數2
,它一定是素數,然後用2
把序列的2
的倍數篩掉:
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
取新序列的第一個數3
,它一定是素數,然後用3
把序列的3
的倍數篩掉:
5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
取新序列的第一個數5
,然後用5
把序列的5
的倍數篩掉:
7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...
不斷篩下去,就可以得到所有的素數。
# 構造一個從3開始的奇數序列
def _odd_iter():
n = 1
while True:
n += 2
yield n
def _not_visible(n):
return lambda x: x % n > 0
def primes():
yield 2
it = _odd_iter()
while True:
n = next(it)
yield n
it = filter(_not_visible(n), it)
for n in primes():
if n < 1000:
print(n)
else:
break