內核版本:2.6.22 為什麼要采用這樣一個較低的版本進行移植了,因為韋東山大牛說了,低版本的才能學到東西,越是高版本需要移植時做的工作量越少,學的東西越少。
內核啟動分為三個階段,第一是運行head.S文件和head-common.S,第三個階段是允許第二是運行main.c文件
對於ARM的處理器,內核第一個啟動的文件是arc/arm/kernel下面的head.S文件。當然arc/arm/boot/compress下面也有這個文件,這個文件和上面的文件略有不同,當要生成壓縮的內核時zImage時,啟動的是後者,後者與前者不同的時,它前面的代碼是做自解壓的,後面的代碼都相同。我們這裡這分析arc/arm/kernel下面的head.S文件。當head.S所作的工作完成後它會跳到init/目錄下跌的main.c的start_kernel函數開始執行。
第一階段:
首先截取部分head.S文件
ENTRY(stext)
msr cpsr_c,#PSR_F_BIT | PSR_I_BIT | SVC_MODE @ ensure svc mode
@ andirqs disabled
mrc p15,0, r9, c0, c0 @ get processor id
bl __lookup_processor_type @ r5=procinfo r9=cpuid
movs r10,r5 @ invalidprocessor (r5=0)?
beq __error_p @ yes, error 'p'
bl __lookup_machine_type @ r5=machinfo
movs r8,r5 @ invalidmachine (r5=0)?
beq __error_a @ yes, error 'a'
bl __create_page_tables
/*
*The following calls CPU specific code in a position independent
*manner. See arch/arm/mm/proc-*.S fordetails. r10 = base of
*xxx_proc_info structure selected by __lookup_machine_type
*above. On return, the CPU will be readyfor the MMU to be
*turned on, and r0 will hold the CPU control register value.
*/
ldr r13,__switch_data @ address to jump toafter
@ mmuhas been enabled
adr lr,__enable_mmu @ return (PIC)address
第一步,執行的是__lookup_processor_type,這個函數是檢查處理器型號,它讀取你的電路板的CPU型號與內核支持的處理器進行比較看是否能夠處理。這個我們不關心它的具體實現過程,因為現在主流處理器內核都提供了支持。
第二步,執行的是__lookup_machine_type,這個函數是來檢查機器型號的,它會讀取你bootloader傳進來的機器ID和他能夠處理的機器ID進行比較看是否能夠處理。內核的ID號定義在arc/arm/tool/mach_types文件中MACH_TYPE_xxxx宏定義。內核究竟就如何檢查是否是它支持的機器的呢?實際上每個機器都會在/arc/arm/mach-xxxx/smdk-xxxx.c文件中有個描述特定機器的數據結構,如下
- MACHINE_START(S3C2440,"SMDK2440")
- /* Maintainer: Ben Dooks<ben@fluff.org> */
- .phys_io =S3C2410_PA_UART,
- .io_pg_offst = (((u32)S3C24XX_VA_UART) >> 18) & 0xfffc,
- .boot_params = S3C2410_SDRAM_PA + 0x100,
-
- .init_irq =s3c24xx_init_irq,
- .map_io =smdk2440_map_io,
- .init_machine = smdk2440_machine_init,
- .timer =&s3c24xx_timer,
- MACHINE_END
-
MACHINE_START和 MACHINE_END實際上被展開成一個結構體
- #defineMACHINE_START(_type,_name) \
- staticconst struct machine_desc __mach_desc_##_type \
- __used \
- __attribute__((__section__(".arch.info.init")))= { \
- .nr =MACH_TYPE_##_type, \
- .name =_name,
-
- #defineMACHINE_END \
- };
於是上面的數據結構就被展開為
- staticconst struct machine_desc __mach_desc_S3C2440 \
- __used \
- __attribute__((__section__(".arch.info.init")))= { \
- .nr =MACH_TYPE_S3C2440, \
- .name =”SMDK2440”,};
- .phys_io = S3C2410_PA_UART,
- .io_pg_offst = (((u32)S3C24XX_VA_UART) >> 18) & 0xfffc,
- .boot_params = S3C2410_SDRAM_PA + 0x100,
-
- .init_irq =s3c24xx_init_irq,
- .map_io =smdk2440_map_io,
- .init_machine = smdk2440_machine_init,
- .timer =&s3c24xx_timer,
-
- }
每個機器都會有一個machine_desc__mach_desc結構,內核通過檢查每個machine_desc__mach_desc的nr號和bootloader傳上來的ID進行比較,如果相同,內核就認為支持該機器,而且內核在後面的工作中會調用該機器的machine_desc__mach_desc_結構中的方法進行一些初始化工作。
第三步,創建一級頁表。
第四步,在R13中保存__switch_data 這個函數的地址,在第四步使能mmu完成後會跳到該函數執行。
第五步,執行的是__enable_mmu,它是使能MMU,這個函數調用了__turn_mmu_on函數,讓後在_turn_mmu_on在最後將第三步賦給R13的值傳給了PC指針 (mov pc, r13),於是內核開始跳到__switch_data這個函數開始執行。
再來看arch/arm/kenel/head-common.S這個文件中的__switch_data函數
- __switch_data:
- .long __mmap_switched
- .long __data_loc @ r4
- .long __data_start @ r5
- .long __bss_start @ r6
- .long _end @ r7
- .long processor_id @ r4
- .long __machine_arch_type @ r5
- .long cr_alignment @ r6
- .long init_thread_union+ THREAD_START_SP @ sp
-
- /*
- * The following fragment of code is executedwith the MMU on in MMU mode,
- * and uses absolute addresses; this is notposition independent.
- *
- * r0 =cp#15 control register
- * r1 = machine ID
- * r9 = processor ID
- */
- .type __mmap_switched,%function
- __mmap_switched:
- adr r3,__switch_data + 4
-
- ldmia r3!,{r4, r5, r6, r7}
- cmp r4,r5 @ Copy datasegment if needed
- 1: cmpne r5,r6
- ldrne fp,[r4], #4
- strne fp,[r5], #4
- bne 1b
-
- mov fp,#0 @ Clear BSS(and zero fp)
- 1: cmp r6,r7
- strcc fp,[r6],#4
- bcc 1b
-
- ldmia r3,{r4, r5, r6, sp}
- str r9, [r4] @ Save processor ID
- str r1, [r5] @ Save machine type
- bic r4,r0, #CR_A @ Clear 'A' bit
- stmia r6,{r0, r4} @ Save controlregister values
- b start_kernel
這個函數做的工作是,復制數據段清楚BBS段,設置堆在指針,然後保存處理器內核和機器內核等工作,最後跳到start_kernel函數。於是內核開始執行第二階段。
第二階段:
我們再來看init/目錄下的main.c的start_kernel函數,這裡我只截圖了部分。
- asmlinkage void __init start_kernel(void)
- {
- …………………….
- ……………………..
- printk(KERN_NOTICE);
- printk(linux_banner);
- setup_arch(&command_line);
- setup_command_line(command_line);
-
-
- parse_early_param();
- parse_args("Booting kernel",static_command_line, __start___param,
- __stop___param - __start___param,
- &unknown_bootoption);
- ……………………
- …………………………
- init_IRQ();
- pidhash_init();
- init_timers();
- hrtimers_init();
- softirq_init();
- timekeeping_init();
- time_init();
- profile_init();
- …………………………
- ……………………………
- console_init();
- ………………………………
- ………………………………
- rest_init();
- }
從上面可以看出start_kernel首先是打印內核信息,然後對bootloader傳進來的一些參數進行處理,再接著執行各種各樣的初始化,在這其中會初始化控制台。最後會調用rest_init();
我們再來看rest_init()函數
- static void noinline __init_refok rest_init(void)
- __releases(kernel_lock)
- {
- int pid;
-
- kernel_thread(kernel_init, NULL, CLONE_FS | CLONE_SIGHAND);
- ............
- }
他啟動了kernel_init這個函數,再來看kerne_init函數
- static int __init kernel_init(void * unused)
- {
- ..............................
-
- if (!ramdisk_execute_command)
- ramdisk_execute_command = "/init";
-
- if (sys_access((const char __user *) ramdisk_execute_command, 0) != 0) {
- ramdisk_execute_command = NULL;
- prepare_namespace();
- }
-
- /*
- * Ok, we have completed the initial bootup, and
- * we're essentially up and running. Get rid of the
- * initmem segments and start the user-mode stuff..
- */
- init_post();
- return 0;
- }
kernel_init先調用了prepare_namespace();然後調用了init_post函數
- void __init prepare_namespace(void)
- {
- ..........................
- mount_root();
- .....................
- }
可以看出prepare_namespace調用了mount_root掛接根文件系統。接著kernel_init再執行init_post
- static int noinline init_post(void)
- {
- .......................................
- /*打開dev/console控制台,並設置為標准輸入、輸出*/
-
- if (sys_open((const char __user *) "/dev/console", O_RDWR, 0) < 0)
- printk(KERN_WARNING "Warning: unable to open an initial console.\n");
-
- (void) sys_dup(0);
- (void) sys_dup(0);
-
- if (ramdisk_execute_command) {
- run_init_process(ramdisk_execute_command);
- printk(KERN_WARNING "Failed to execute %s\n",
- ramdisk_execute_command);
- }
-
- /*
- * We try each of these until one succeeds.
- *
- * The Bourne shell can be used instead of init if we are
- * trying to recover a really broken machine.
- */
-
- //如果bootloader指定了init參數,則啟動init參數指定的進程
- if (execute_command) {
- run_init_process(execute_command);
- printk(KERN_WARNING "Failed to execute %s. Attempting "
- "defaults...\n", execute_command);
- }
-
- //如果沒有指定init參數,則分別帶sbin、etc、bin目錄下啟動init進程
- run_init_process("/sbin/init");
- run_init_process("/etc/init");
- run_init_process("/bin/init");
- run_init_process("/bin/sh");
-
- panic("No init found. Try passing init= option to kernel.");
- }
注意上面的run_init_process的會等待init進程返回才往後面執行,所有它一旦找到一個init可執行的文件它將一去不復返。
綜上,內核啟動的過程大致為以下幾步:
1.檢查CPU和機器類型
2.進行堆棧、MMU等其他程序運行關鍵的東西進行初始化
3.打印內核信息
4.執行各種模塊的初始化
5.掛接根文件系統
6.啟動第一個init進程